
Road to Cryptographic Agility

Guillaume Michel
Cybersecurity Master Student

School of Computer and Communication Sciences

Diploma Project

March 2021

Responsible
Prof. Serge Vaudenay

EPFL / LASEC

Supervisor
Michael Osborne

IBM Research

Contents

1 Introduction 4

2 Background 7

2.1 About quantum computers 7

2.1.1 Quantum computers 7

2.1.2 Implications on today’s cryptography 8

2.2 Migration to post-quantum cryptographic algorithms 9

2.3 Cryptographic Policy . 10

3 Cryptographic Agility 12

3.1 Definition . 12

3.2 Need for Cryptographic Agility 12

3.3 Existing agile cryptographic libraries 17

3.3.1 Java Cryptographic Architecture (JCA) 17

3.3.2 Gnu Privacy Guard Made Easy (gpgme) 18

3.3.3 Qt SSL library (QSsl) 19

3.3.4 OpenSSL . 19

3.4 Agile Cryptographic Framework Requirements 20

3.4.1 Design . 20

3.4.2 Interface of cryptographic implementations 21

3.4.3 Interface of the source code 23

3.4.4 Configuration interface 23

3.4.5 Data structures . 26

3.4.6 Migration of encrypted data 26

3.4.7 Nature of the agile cryptographic framework 27

3.5 Proof of concept: Signature microservice 31

3.5.1 Design . 32

3.5.2 Results . 33

3.6 Cryptographic Agility Strategy 33

3.6.1 Migration to an agile framework 33

3.6.2 Data migration . 34

3.6.3 Cryptographic Agility in CI/CD 36

2

CONTENTS 3

4 Cryptographic Inventory 37
4.1 Definition . 37
4.2 Need for Cryptographic Inventory 37

4.2.1 Before Agile Cryptography 37
4.2.2 After Agile Cryptography 39

4.3 Inventory building techniques 39
4.4 Existing Cryptographic Inventories 40

4.4.1 Cryptosense Analyzer 40
4.4.2 InfoSec Global AgileScan 40

4.5 Inventory interface . 40
4.5.1 Dashboard . 41
4.5.2 Output format . 44
4.5.3 Diagrams . 44

4.6 Cryptographic Inventory in CI/CD 46

5 Implementation 48
5.1 Goals . 48
5.2 Design . 49
5.3 Challenges . 54
5.4 Limitations . 55
5.5 Installation and running guide 56
5.6 Future work . 65

6 Future work 72

7 Conclusion 74

Chapter 1

Introduction

In the recent years, quantum computers have been evolving rapidly. They
are bringing to life many quantum algorithms running exclusively on quan-
tum computers that will be able to solve some problems more efficiently. One
of these, Shor’s algorithm solves the integer factorization problem in poly-
nomial time. Yet, the security of many cryptographic algorithms securing
web browsing, private messages and online payments relies on the hardness
of the integer factorization problem, and an algorithm able to solve this
problem in polynomial time seriously threatens the security of these appli-
cations. So far, quantum computers are not powerful enough to factorize the
large integers currently in use, but once they will be, most of the public-key
cryptography in use will be vulnerable to attacks from quantum computers.
As we rely on these algorithms in our daily life when using a computer or
smartphone, the impact would be a cataclysm for the society.

Fortunately, there is a way to avoid this disaster. There exists some
public-key cryptographic algorithms for which no effective attack using a
quantum computer has been found. Replacing the current algorithms with
these post-quantum ones would prevent the breakdown of our security proto-
cols. The National Institute of Standards and Technology (NIST) is hosting
a competition to define the new post-quantum cryptographic standards, and
is expected to announce the winners in the years to come.

However, we are not out of the woods yet. Once the selected algorithms
will be announced, the real challenge will be to smoothly transition from the
algorithms we are currently using to the new standards. This migration is
expected to cause much trouble to developers as migration of cryptographic
algorithms is known to be chaotic and such a massive migration has never
occurred in the past. Taking the example of MD5, the cryptographic hash
function has been found vulnerable to collision attacks in 2005 [19] and
cryptographers already recommended a switch to SHA1 from 1996. In 2021,
MD5 is still widely used, and its successor, SHA1, has since been deprecated
following vulnerabilities discovery [18]. Therefore, after 16 years, the retire-

4

5

ment of MD5 is still not settled, which illustrates quite well the messiness
of migrations.

Cryptography is currently consumed in a static way, which is not propi-
tious to migrations. Cryptographic algorithms are implemented in numer-
ous libraries in multiple programming languages, and developers consume
cryptography by statically calling functions exported by these implemen-
tations. The software infrastructure depends among other things on the
cryptographic algorithms in use, on the selected security level and digest
size. A single update in these parameters can generate significant changes
to the overall software infrastructure. For this reason, replacing the use of a
cryptographic algorithm by another in a complex project is a tedious work,
requiring not only to replace every function call to the deprecated algorithm,
but also requiring to adapt all the software infrastructure.

As the nature of this challenge is very practical, only few academic papers
discuss the topic. In 2019, many cryptographers participated to a workshop
whose goal was to identify research challenges in the area of post-quantum
cryptography migration and cryptographic agility [14]. No proposal solving
the challenges of cryptographic agility and migration has been published yet,
but many companies are starting to plan the migration to post-quantum
cryptography ahead. Hence, the industry is currently pushing to find a
solution to the big migration problem.

This diploma project is an exploratory work focused on the big crypto-
graphic migration from the pre- to the post-quantum world. The goals of the
project are the following: (1) identify the needs of cryptographic migration,
(2) discover which challenges cryptographic agility could solve (3) formal-
ize requirements for a successful cryptographic agile framework (4) propose
design guidelines for the implementation of such framework, (5) discuss the
usefulness of cryptographic inventories and (6) envision the roadmap from
legacy to agile cryptography. This work describes a proof of concept and a
cryptographic inventory builder implementation, but the source codes are
not provided as they are property of IBM Research. This report will not
contain any sensitive information from IBM Research.

In Chapter 2, we introduce quantum computers and how they are re-
defining the game in cryptography. We give a brief introduction to how
they operate, and their recent development. We introduce Shor’s algorithm
and its implications on current cryptography. We explain more in details
why a migration to post-quantum cryptography is required and how it could
be carried out. We also define what a cryptographic policy is, and present
some of its use cases.

Chapter 3 begins with the definition of Cryptographic Agility. We ex-
plain why there is a need for cryptographic agility, and which challenges
could be addressed by an agile use of cryptography. Then, we review exist-
ing cryptographic libraries with some agile features and evaluate the level
of agility. We try to define requirements for a cryptographic agile frame-

6 CHAPTER 1. INTRODUCTION

work. This contribution contains design guidelines and suggestions on the
nature, the architecture and the interfaces of such framework. After this,
we describe the agile Signature microservice we built as a simple proof of
concept, illustrating some of the mentioned requirements. We conclude this
chapter by proposing a strategy to migrate from the use of legacy to agile
cryptography.

The usefulness of cryptographic inventories is discussed in Chapter 4.
We start by introducing the notion of cryptographic inventory. We then
detail the need for cryptographic inventories and the problems it tackles,
before and after the switch to agile cryptography. We discuss the different
techniques to build the inventory of a software, with a special focus on au-
tomated methods. We introduce the Software Bill of Material and explain
how it can be used with a focus on cryptography dependencies. We review
two existing cryptographic inventories services from Cryptosense and In-
fosec Global. We explore the different possible interfaces for cryptographic
inventory tools, and examine the potential features of a dashboard graphi-
cal interface. We consider the nature of the cryptographic inventory output,
and present appropriate diagrams for the data visualization of dependency
graphs. We conclude the chapter with a discussion on the role of cryp-
tographic inventory in Continuous Integration / Continuous Deployment
(CI/CD) pipelines.

In Chapter 5, we describe the implementation of the purpose built cryp-
tography inventory tool for Go implementations. We start by stating the
goals of this tool. We then detail the architectural design, and explain
the strategical choices undertaken during implementation. We describe the
main challenges we had to overcome in the implementation as well as the
limitations for this project. We provide an installation and running guide,
demonstrating an example of how to build a cryptographic inventory using
the tool. We finish the section with a description of potential features which
could be added as a future work.

The future work of this project is presented in Chapter 6. It describes
the next steps following the creation of a cryptographic inventory builder
on the road to cryptographic agility. It provides milestones for the devel-
opment of cryptographic agility, and for the migration from legacy to agile
cryptography.

We finally conclude this report in Chapter 7, where we restate the main
results of this diploma project. We highlight the need for cryptographic
agility and its goals. We give suggestions on how it could be reached from
what we have learned in this project. We underline the importance of build-
ing and using cryptographic inventories, in the migration process to either
post-quantum or agile cryptography.

Chapter 2

Background

In this chapter, we briefly introduce the different concepts and technolo-
gies related to cryptographic inventory and cryptographic agility. We first
shortly discuss about quantum computers and their implications in today’s
cryptographic world. We discuss the need for a migration of cryptographic
algorithms, and the challenges caused by such a migration. We finish this
chapter by giving a description of cryptographic policies, and their use cases.

2.1 About quantum computers

2.1.1 Quantum computers

We will not expand much on this topic, as quantum physics and quantum
computing are not the subject of this work. This section offers a very high
level summary on what quantum computers are, and what they are capable
of doing.

A quantum computer is a type of computer making use of quantum
physics to perform certain kinds of operations more efficiently compared
with a classical computer. The difference between a classical and a quantum
computer is the following: the classical computer handles information as bits,
which can be represented as 0 and 1, whereas quantum computer handles
information as qubits, which is a quantum state that can be represented
either by 0, 1 or by a superposition of 0 and 1. As long as the value of a qubit
is not measured, its state can be 0, 1 or a superposition of these two states.
When the value of the qubit is measured, the qubit is revealed to be either
0 or 1 according to a certain probability [13]. These property from quantum
physics allows computer to perform some computations more efficiently than
regular computers, but the results of these computation might be inaccurate
in some cases. To solve hard problems, a quantum computer needs to run
quantum algorithms, designed to solve a specific problem. Such algorithms
don’t always exists, thus there are some problems that can not be solved
more efficiently by a quantum computer than by a regular computer. People

7

8 CHAPTER 2. BACKGROUND

have been working on quantum computing since 1968 [20], but the first
experimental quantum computer able to process only 2 qubits was built in
1998.

The computational power of a quantum computer is determined by the
number of qubits available for use. A quantum computer with a large num-
ber of qubits will be able to solve problems more complicated than a quan-
tum computer with a low number of qubits. Large companies are investing
a lot in research and development of quantum computers. In 2019, Google
demonstrated that they were able to solve complex problems using their 54-
qubits quantum computer [3]. IBM recently announced their road map to
reach a quantum computer with the ability to process more than a thousand
qubits by 2023 [9]. Quantum computer require to be able to process a larger
number of qubits to be efficient in solving useful problems, and this time
will probably arrive soon, given the exponential growth in the number of
qubits a quantum computer is able to process.

2.1.2 Implications on today’s cryptography

Shor’s algorithm [17], published in 1994, is a polynomial-time quantum al-
gorithm for integer factorization. It can basically retrieve all prime factors
for any given integer N in a time polynomial to logN . The current largest
number factored using Shor’s algorithm is 35, and was factored by IBM in
2019 [2]. This shows that quantum computers are not ready to factor large
integers yet.

As Shor’s algorithm is made for integer factorization, and can run in
polynomial time, quantum computers are a threat to today’s cryptography
relying on the hardness of large integer factorization, discrete logarithm
problem and elliptic curve discrete logarithm problem. Most public-key
cryptographic schemes currently used, including RSA, and elliptic curves
schemes, depend on the hardness of these problems, and will thus be broken
by quantum computer, running Shor’s algorithm. HTTPS, TLS, SSH, VPN,
cryptocurrencies etc. will all become vulnerable to quantum computers,
which means the security protecting us when we browse the web, exchange
messages, make online payments will break as soon as a quantum computer
is able to factorize large numbers. Moreover, when these computers become
available, they will be able to break any encrypted message recorded in the
past, meaning that encrypted top secret messages exchanged today between
governments can be decrypted in the future.

Fortunately, cryptographers are developing new algorithms that are qual-
ified of Post-quantum or Quantum-resistant. They aim to replace currently
used public public-key encryption, key-establishment and digital Signature
schemes, vulnerable to Shor’s algorithm. These algorithms, running on reg-
ular computer, rely on the hardness of problems that cannot be solved more
efficiently by quantum computers, yet. The National Institute of Standards

2.2. MIGRATION TO POST-QUANTUMCRYPTOGRAPHIC ALGORITHMS9

and Technology (NIST) initiated a competition to define the post-quantum
cryptographic algorithms standards. All submissions have been reviewed
and evaluated during the first two rounds, and the finalists have been an-
nounced in July 2020 [1]. In this contests, there are two categories of al-
gorithms, the first one is public-key encryption and key-establishment al-
gorithms and the second one is for digital signature Algorithms. Among
the finalists, one or multiple candidates will be selected to be the new stan-
dard(s), for each category. There might be multiple algorithms selected in
the same category, as they are different metrics for evaluation, depending
on the context, the optimal algorithm will differ. These submissions are
using approaches such as lattice-based cryptography, code-based cryptog-
raphy, supersingular elliptic curve isogeny cryptography, but I will not get
into their details as it is out of the scope of this project.

The situation is less alarming concerning symmetric-key cryptography.
Grover’s algorithm [4], would allow quantum computers to find the unique
input to a black box function producing a particular output value, with high
probability, in O(

√
N) operations, N being the size of the function’s domain.

Hence, it could potentially provide a quadratic speedup for exhaustive key
search in block ciphers. It is not proved that this algorithm will ever be
practically relevant for this purpose, but even if it is, doubling the key size
for symmetric-key algorithms is sufficient to preserve the same security level
[5]. Thus, making sure symmetric-key algorithms stay secure in the quantum
world, would not require much change.

2.2 Migration to post-quantum cryptographic al-
gorithms

As discussed in 2.1, once they will have a sufficient amount of qubits, quan-
tum computers will be able to break most security protocols used today,
with a retroactive effect. To make sure that all computer security will not
collapse once the quantum computers are out, all protocols, infrastructures
and applications making use of vulnerable cryptographic primitives need to
migrate to quantum-resistant alternatives. Even though, quantum comput-
ers are not yet available and powerful enough to break security standard,
sensitive encrypted data can be recorded, and decrypted once quantum com-
puters are ready. Hence it is best if this migration is realized as soon as
possible. It would be disastrous for any entity to keep using cryptographic
algorithms vulnerable to quantum computers, after this turning point.

NIST plans to announce the new post-quantum standard algorithms in
the years to come. By then, the implementation of these algorithms will be-
come available, and cryptographic programming libraries will include these
new implementations. The developers will then have to migrate all vulnera-
ble algorithms they are using to quantum-safe ones, and make sure that this

10 CHAPTER 2. BACKGROUND

migration does not break anything in the existing code. Multiple challenges
will be faced during the migration. (1) Most cryptographic libraries are not
agile, which means that when developers use cryptography, they have to call
one of the library’s function, corresponding to a specific algorithm. Hence,
a migration would require the developers to change every single function
call to a vulnerable algorithm, by a function call to a safer one, which is a
tedious work. (2) Some software have to be redesigned to make use of these
new algorithms. Sometimes, software depends on a statically defined key
length, or protocol that has to be changed. (3) The developers have to un-
derstand the implementation of the new quantum-safe algorithms in order
to use them correctly. However, not all developers have a good knowledge
of cryptography and security principles, which could lead to a misuse of
quantum-safe algorithms, making them vulnerable. (4) A lot of applications
have dependencies on other applications and libraries, and it is sometimes
hard and tedious to verify which cryptographic algorithms are used by the
dependencies. If one of the dependencies has not migrated to quantum-safe
cryptographic algorithms, or is not maintained anymore, then the developer
has to replace it to make sure their application stays secure.

As of early 2021, it is too early to start a migration to post-quantum al-
gorithms because the standards have not been released yet. However, some
companies start to plan this migration ahead. Some of them are looking for
new agile libraries or frameworks, in order to facilitate the post-quantum
migration, and the next migrations that will follow. The next migrations can
be caused by the discovery of new attacks against the post-quantum stan-
dards, or by new more efficient technologies threatening the cryptography in
use. As stated earlier, migrating all uses of a given cryptographic algorithm
is a tedious task, so automatizing this process would spare a lot of effort and
money. Nevertheless, at least one manual migration is anyway required to
migrate to a potentially agile cryptographic framework, being able to handle
next migrations automatically. Cryptographic inventory tools are very use-
ful for manual migration, as they are able to highlight which pre-quantum
algorithms have not been migrated yet.

2.3 Cryptographic Policy

A cryptographic policy is a set of rules describing how cryptography should
be used. A cryptographic policy can be defined at multiple levels. It can
be defined at a company-wide level, implying it should be followed for all
implementations and activities related to the company, at a department
level, or simply on a specific project. Cryptographic policing is also useful
for compliance to new privacy laws, such as the European General Data
Protection Regulation (GDPR). More and more companies are adopting a
cryptographic policy, and many of them are publicly releasing it. As there

2.3. CRYPTOGRAPHIC POLICY 11

are not information security experts in every business, multiple companies
ask for external consulting firms to build a cryptographic policy for them.

When looking at concrete cryptographic policies, we observe that some
of them are very vague, while some other are really precise. Some example
of weak policing include requiring the use of encrypted email services and
Virtual Private Network (VPN), sensitive data transfer over HTTPS. Some
companies have a white list of authorized protocols and modes for remote
data access, such as FTP or SCP. Policies can also include advice for key
management. Well designed security policies even describe which algorithm
should be used for different actions, such as encryption, key exchange, sig-
nature etc., describing precisely the key length and the parameters of the
cryptographic algorithms. Weak and broken algorithms such as MD5 are
often forbidden for use.

Cryptographic policies are currently enforced manually. Developers have
to make sure that their code is compliant with the policy, and that they
do not use an external dependency using inappropriate cryptographic algo-
rithms. A cryptographic inventory tool can help developers to keep track,
of the cryptographic algorithms in use, and they can compare the inventory
with the list of cryptographic primitives allowed by the policy. However,
there is for now no inventory tool giving an automated feedback for a spe-
cific cryptographic policy, which would be quite useful.

Chapter 3

Cryptographic Agility

3.1 Definition

Cryptographic agility is defined as a software design practice encouraging
the quick adoption of new cryptographic algorithms and primitives. It al-
lows developers to update the use of cryptographic algorithms in software
implementations without making significant changes to the software infras-
tructure. A software or system can be considered as crypto-agile if its se-
curity parameters and cryptographic algorithms can be easily changed in
an automated way. Cryptographic agility inherits from most Agile Soft-
ware Development principles, such as allowing implementation changes at
a late stage of a project. Cryptography agility helps to better understand
how cryptography is used, and has the capability to build cryptographic
inventories, that can be use to certify compliance with security regulations.

In this section we will define the goals of an agile cryptographic frame-
work, which is a structure providing cryptographic agility for software. We
use the word framework, as the nature of the structure can take multiple
forms, that we will describe in this section.

3.2 Need for Cryptographic Agility

As described in Section 2.1, the arrival of powerful quantum computers
will cause a huge migration from all systems, software and protocols to
quantum safe cryptographic algorithms. Most of the current code bases
do not use agile cryptographic frameworks, hence the migration will be a
tedious manual work. As not all software engineers have a background
in cryptography, they may not migrate to the new quantum algorithms
correctly, introducing security vulnerabilities in their applications. For these
reasons, a manual migration of cryptographic algorithms is to be avoided if
possible.

As computer hardware and software evolve at a fast pace, no crypto-

12

3.2. NEED FOR CRYPTOGRAPHIC AGILITY 13

graphic algorithm is time proof. There will always be a need for crypto-
graphic migration, as research advances in this domain. Large scale migra-
tions such as the migration to quantum safe cryptography will not happen at
frequent time intervals, but migrations are unavoidable in order to keep se-
curity guarantees. Consequently, a solution to avoid periodic manual migra-
tions is to automate these migrations. This would allow Chief Information
Security Officer (CISO), or any high level security policy maker to perform
automated migrations by themselves, in a fast, secure and inexpensive way.

Moreover, cryptographic agile frameworks could also provide solutions
to the following challenges:

1. Algorithms retirement: As cryptographic algorithms are not time
proof, they need to be retired, once they are considered as insecure, or
after new algorithms are able to replace them. The consequence follow-
ing the retirement of an algorithm consists in replacing the deprecated
function by the new standard. This mini-migration has a significantly
lower impact on the security of software, compared with the future
retirement of the set of all non-quantum cryptographic algorithms,
however it should not be neglected.

MD5 is a good example of algorithm retirement. MD5 is a crypto-
graphic hash function introduced in 1991 by Ronald Rivest [15], and
was widely used and considered as a standard. However, researchers
discovered vulnerabilities in 1996, and a collision vulnerability was
found in 2005 [19], making this algorithm insecure for use, when re-
lying on the collision resistance property. Hence cryptographers rec-
ommended the retirement of MD5, replacing it with SHA1. In 2021,
after cryptographers showed that SHA1 is vulnerable to collision at-
tacks [18], MD5 is still widely used by many companies. This means
that the transition is not finished yet, although the successor of MD5
is already deprecated. This example illustrates the need for a quick
and automated methodology to retire weak algorithms.

2. Flexible security level: The security level of a cryptographic algo-
rithm, usually depends on the key length and is often expressed as n-
bits security. Currently, to change the security level of a cryptographic
function in an implementation, the developer has to go through all of
the function calls, and update bit security parameter for each use.
Having a cryptography agile framework would allow to easily update
the bit security level without having to manually edit the source code.

For example, symmetric encryption algorithms such as AES, will keep
the same security level in the post-quantum world, if the key size
is doubled. Thus, there is a need to have a flexible security level.
Moreover, as computer are always more powerful, if the algorithms we

14 CHAPTER 3. CRYPTOGRAPHIC AGILITY

are currently using remain secure over time, we will need to increase
the key size at a point to keep the same security guarantees.

3. Platform compatibility: Ideally, the use of cryptographic libraries
and implementation should be platform agnostic. It is true that dif-
ferent platforms might have different architectures, and thus different
software optimizations, but a cryptographic library should be used
similarly on all platforms. An agile cryptographic framework should
be usable for all platforms (Linux, Windows, IBM Z, Android etc.)
in order to allow software developers to build agile and platform ag-
nostic applications. Ideally, the same library should be usable by all
programming languages. In practice, it may not be optimized, but
having bridges from all programming languages would allow to have a
single trusted framework grouping all algorithms, making it convenient
for use.

4. Implementation agility: Software developers should be able to use
an agile cryptographic interface to make abstraction of cryptographic
algorithms in use. This means that the source code will not make
direct function calls to specific algorithms, nor store the keys in an
array which size is defined as a constant. This would allow developers
to update the cryptographic algorithms used by their software in an
agile way, without modifying the source code. This would make ap-
plications cryptography agnostic, not depending directly on a specific
cryptographic implementation. Implementation agility would also al-
low software developers to simply and safely use cryptography, with
a minimal risk of misusing. Hence, developers don’t need to have a
background in cryptography to make a correct use of it.

For example, instead of calling the method aes128 keygen() to gen-
erate a key, followed by aes128 encrypt(key, data) to encrypt some
data, a developer would call the method enc keygen() to generate an
encryption key for an abstract encryption algorithm, and then call the
method encrypt(key, data) to get a ciphertext. There are two pos-
sibilities for the agile cryptographic library: (1) the library determines
by itself which algorithm should be used or (2) the library is configured
by a cryptographic policy, describing which algorithm should be used.

5. Cryptography policing: An agile cryptographic framework would
give the opportunity to regulate which cryptographic algorithms and
protocols are used, at a company-wide level. A company, department
team, or project team can define a cryptographic policy, describing
which and how algorithms and protocols should be used. The policy
is often use to comply with local data regulations. The agile framework
could provide a list of used algorithms, useful to verify compliance with
the policy.

3.2. NEED FOR CRYPTOGRAPHIC AGILITY 15

Furthermore, the framework would define a clear format for crypto-
graphic policing, for example using YAML data serialization language.
A policy in such a format could be given as input to the cryptographic
framework, describing how it should behave. It would for example
define which algorithms should be used for encryption, key exchange,
signature etc. The policy could be stored at the root of the project,
and migrating to a new algorithm should be as simple as editing the
corresponding line in the policy text file.

6. Encrypted Files Migration: Another component of cryptographic
agility is the ability to migrate encrypted data. This migration to new
cryptographic algorithms is easy as long as no encrypted data is stored,
but encrypted data stored on disk or in the cloud poses new challenges.
For example, in an instant peer-to-peer messaging app, the migration
would be complete as long as the messages are exchanged using the new
cryptographic algorithms, supposing messages are stored in clear text
on the end devices. However, if messages are stored encrypted on the
devices, the use of new algorithms would mix messages encrypted with
different algorithms. This is undesired, because messages encrypted
using the old algorithm would potentially be insecure, in the case the
migration happened to replace a vulnerable algorithm. And we don’t
want to deal with multiple algorithms when decrypting messages for
the sake of simplicity. Thus, encrypted messages already stored at the
moment of the migration have to migrate too. This challenge being
quite complex, we will expand more in Section 3.6.2

7. Contextual Agility: The agile framework should be able to define
an appropriate cryptographic policy from contextual details, helping
compliance with local governmental regulations. By scanning sim-
ple systems parameters, such as geographical region, or system type
(personal laptop, physical server, virtual machine etc.) the framework
could decide which cryptographic algorithms to use automatically. For
instance, a server located in Europe storing customers personal infor-
mation will select cryptographic algorithms compliant with the GDPR.

Given the context in which cryptographic functions are called, the
framework should be able to determine which algorithm would be the
most appropriate. For example, highly confidential data exchanged
over the internet will not use the same encryption, as a computation-
ally limited IoT device sending encrypted logs over a private network.

8. Quick vulnerability patch: When a vulnerability or exploit is dis-
covered in a cryptographic algorithm or implementation, it would be
easy for developers to know quickly if their application is vulnerable
to the weakness, as the agile framework provides a list of all crypto-
graphic primitives in use. If they find their software vulnerable, they

16 CHAPTER 3. CRYPTOGRAPHIC AGILITY

would be able to temporally switch to another algorithm, while the
implementation is being fixed. Once a patch is available, it can sim-
ply be applied on the agile framework, so no source code has to be
modified.

We illustrate this argument with the example of Heartbleed [7]. Heart-
bleed is a security bug in the implementation of the OpenSSL library,
widely used, including in the TLS protocol implementation. The bug
was discovered in 2014, and a patch was immediately issued. Even
though most devices quickly received the patch, 91,063 devices were
still vulnerable to the attack 5 years after the patch was published
[16]. Having the ability to patch automatically and quickly security
vulnerabilities would solve these kind of issues.

9. Ease of use: An agile cryptographic framework would allow develop-
ers without further knowledge in cryptography and security protocols
to use cryptographic algorithms correctly. Many developers end up
working with cryptography, although they don’t have a proper back-
ground in information security. Thus, it is common that vulnerabilities
are found in software because cryptographic algorithms have not been
used correctly by the developers. For example, some IV are not ran-
domly generated, which makes them predictable, nonces are reused.
Evidently, this can introduce severe security vulnerabilities in the de-
veloped software and systems.

A study analyzed 95 applications from the Apple App Store, and dis-
covered that 64 of them contains security flaws of various severeness,
due to cryptographic misuse [12]. Having a framework giving a high
level of abstraction on cryptographic algorithms to developers could
avoid the introduction of cryptrographic misuse. The framework could
handle key management, IV and nonces generation, security parame-
ters etc.

10. Algorithm negotiation: Having a cryptographic agile framework
would allow client-server or peer-to-peer (p2p) applications to dynam-
ically negotiate the cipher suites they will use. The list of accepted
cipher suites, with order of preferences could be given as input for each
system, and would facilitate the negotiation. This would allow systems
to use their favorite cryptographic algorithms, instead of using the
ones defined as default. Furthermore, this would allow parties to use
algorithms that are compliant with the local regulations (e.g GDPR).
Thus, more freedom of choice can be given to experienced developers,
willing to use alternate algorithms as they may be more optimized for
a specific task. Moreover, as the list of accepted ciphers should con-
tain only cryptographic algorithms and protocols considered as safe by
the entity, this serves as a mitigation against downgrade attacks. In

3.3. EXISTING AGILE CRYPTOGRAPHIC LIBRARIES 17

the case of decentralized p2p systems, it is beneficial to support agile
negotiation in a set of multiple cryptographic algorithms, otherwise, if
the only communication protocol gets updated for one of the peers, it
cannot communicate anymore with the rest of the network.

11. Composability agility: Cryptographers and security software devel-
opers should be able to use existing cryptographic primitives in order
to build new protocols, or security tools in an agile way. Thus the
cryptographic framework should provide a large interface for security
developers willing to compose existing primitive to create new schemes
easily. This can be seen as an advanced mode.

12. Future proof : As stated before, the ability to quickly and automat-
ically perform cryptographic algorithms migrations, when some algo-
rithms are not considered as safe anymore. However, it is likely that
new cryptographic primitive will appear. They will not necessarily re-
place older schemes because they are safer, but may be more efficient
or providing different properties. For example, Fully Homomorphic
Encryption (FHE) is a form of encryption permitting to perform op-
erations on encrypted data. FHE offers new capabilities, even though
it does not replace any existing technology. There might be new cryp-
tographic offering new capabilities in the future, such as quantum cryp-
tographic algorithms and thus an agile framework should be ready to
include them, and facilitate migration from legacy algorithms.

13. Framework agility: Last but not least, the cryptographic agile frame-
work should be agile itself, in addition to providing agile cryptography.
This framework should be build using agile development techniques,
and easy to update, and add new primitives. It should support cryp-
tographic algorithms implementations from multiple providers.

3.3 Existing agile cryptographic libraries

In this section, we review existing cryptographic libraries that have some
agile components. We will also show why the level of agility is not enough
to fulfill the needs described in Section 3.2. The list of described libraries is
non exhaustive, and includes the libraries with interesting agile properties.

3.3.1 Java Cryptographic Architecture (JCA)

Java Cryptographic Architecture (JCA) is Java default cryptographic li-
brary. Its structure is interesting as it offers string defined modular cryp-
tographic functions. Listing 3.1 illustrates how to sign data using JCA.
The algorithms used for the signature are specified as strings given to the

18 CHAPTER 3. CRYPTOGRAPHIC AGILITY

KeyPairGenerator.getInstance() and Signature.getInstance() func-
tions. Hence, the function calls are not static function calls to a specific
algorithm implementation, which gives an opportunity for agility. Migrat-
ing from one cryptographic algorithm to another would only take to modify
the strings inside of the function calls, no data structure needs to be adapted.
To gain even more agility, it would be possible to define a Java source code
file containing a cryptographic policy, in the form of constant strings defined
for each capability. In this setting, a migration would only require to modify
this file defining which algorithms are used. However, it is not possible to
simply migrate the algorithm used to encrypt data at rest on disk, and there
is not support for a migration to post-quantum cryptography.

1 // Creating KeyPair generator object

2 KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("DSA

");

3 // Initializing the key pair generator

4 keyPairGen.initialize (2048);

5 // Generate the pair of keys

6 KeyPair pair = keyPairGen.generateKeyPair ();

7 // Getting the private key from the key pair

8 PrivateKey privKey = pair.getPrivate ();

9 // Creating a Signature object

10 Signature sign = Signature.getInstance("SHA256withDSA");

11 // Initialize the signature

12 sign.initSign(privKey);

13 // Adding data to the signature

14 sign.update("Hello world".getBytes ());

Listing 3.1: Example of signature in Java

3.3.2 Gnu Privacy Guard Made Easy (gpgme)

Gnu Privacy Guard Made Easy (gpgme) is a C, C++ and Python library de-
signed to make access to Gnu Privacy Guard (GnuPG) easy to application
developers. GnuPG1 is an open source implementation of the OpenPGP
standard, allowing to sign and encrypt data and communications. gpgme is
the interface to GnuPG, and the communication between the interface and
the server is made through the libassuan library, which is a purpose built
IPC medium [11]. The overall architecture is quite complicated, but gpgme

exposes general purpose functions in which a algorithm must be specified.
gpgme defines enums of public key algorithms and hash algorithms for this
purpose. Data is exchanged between gpgme and GnuPG, and is stored in
generic data buffers, which are consequently generic. Thus, it would be pos-
sible as for JCA to define all the algorithms that are used through the program
as constants in a specific file serving as cryptographic policy. Migrating from
one algorithm to another only takes to modify this file. However, as for JCA

1https://gnupg.org

3.3. EXISTING AGILE CRYPTOGRAPHIC LIBRARIES 19

there is no way to migrate encrypted data, and no possibility to upgrade to
post-quantum cryptographic algorithms yet. This library was designed to
be agile in the sense that some implementations details should be changed
easily before the deployment, but not to support large migrations.

3.3.3 Qt SSL library (QSsl)

Qt SSL2 (QSsl) is a C++ library implementing a variety of algorithms and
protocols where the caller can specify which algorithm they want to use.
It is possible to configure the QSslConfiguration object to define which
cryptographic algorithms should be used. It is also possible to select which
version of TLS should be used, which demonstrate versioning agility. This
library is agile, as it supports custom algorithm choice and configuration,
but not in the sense of supporting migrations.

3.3.4 OpenSSL

OpenSSL3 is a software library containing open-source implementations of
the SSL and TLS protocols. The main library is written in C, and contains
many basic cryptographic functions implementations. It contains wrappers
allowing the functions to be used from other programming languages. In
OpenSSL current version, 1.1.1, some cryptographic algorithms can agilely
be selected as demonstrated in Listing 3.2. The algorithm selection is made
at line 5, and only OpenSSL implementations can be picked. This offers an
agility level similar to the other discussed libraries.

1 EVP_CIPHER_CTX *ctx;

2 EVP_CIPHER *ciph;

3

4 ctx = EVP_CIPHER_CTX_new ();

5 ciph = EVP_aes_128_cbc ();

6 EVP_EncryptInit_ex(ctx , ciph , NULL , key , iv);

7 EVP_EncryptUpdate(ctx , ciphertext , &clen , plaintext , plen);

8 EVP_EncryptFinal_ex(ctx , ciphertext + clen , &clentmp);

9 clen += clentmp;

10

11 EVP_CIPHER_CTX_free(ctx);

Listing 3.2: Encryption in OpenSSL 1.1.1

OpenSSL is planning a transition to version 3.0, which will contain major
architectural changes. From an agility perspective, they plan on adding sup-
port for cryptographic algorithm implementations from multiple providers.
We show in Listing 3.3 how encryption would change between OpenSSL 1.1.1
and OpenSSL 3.0. The algorithm provider is specified on line 5 when the
encryption algorithm is selected. The algorithm implementation is identified

2https://doc.qt.io/qt-5/ssl.html
3https://openssl.org

https://doc.qt.io/qt-5/ssl.html
https://openssl.org

20 CHAPTER 3. CRYPTOGRAPHIC AGILITY

by its provider and string identifier. OpenSSL 3.0 will offer more agility, as
it will support multiple cryptographic implementation providers, but still
offer no solution for migrations.

1 EVP_CIPHER_CTX *ctx;

2 EVP_CIPHER *ciph;

3

4 ctx = EVP_CIPHER_CTX_new ();

5 ciph = EVP_CIPHER_fetch(osslctx , "aes -128-cbc", NULL);/* <== */

6 EVP_EncryptInit_ex(ctx , ciph , NULL , key , iv);

7 EVP_EncryptUpdate(ctx , ciphertext , &clen , plaintext , plen);

8 EVP_EncryptFinal_ex(ctx , ciphertext + clen , &clentmp);

9 clen += clentmp;

10

11 EVP_CIPHER_CTX_free(ctx);

12 EVP_CIPHER_free(ciph); /* <== */

Listing 3.3: Encryption in OpenSSL 3.0

3.4 Agile Cryptographic Framework Requirements

We did not build an agile cryptographic framework, because it would require
a full team of experts, and take more time than the duration of this project.
However, we gathered the requirements and goals for such a service, and
describe a possible high level design for an agile cryptographic framework.
We built a simple Agile Signature Microservice serving as proof of concept,
that we describe in Section 3.5.

3.4.1 Design

All problems in computer
science can be solved by another
level of indirection

David Wheeler

One possible way to make cryptography agile is to add a level of indirec-
tion in the way we consume cryptography. Currently, programmers have to
make direct function calls to specific cryptographic algorithms implementa-
tions in order to use cryptographic algorithms, which is why a cryptography
migration requires a tedious work. A migration from a cryptographic algo-
rithm to another would require to change all occurrences of an algorithm’s
function calls to another algorithm, as well as adapting the structure of the
software. Figure 3.1 shows the current situation. The source code makes
direct calls to cryptographic algorithms implementations, for instance in the
OpenSSL library, and in this example, changing the encryption algorithm
from aes128 to salsa20 would require to modify the source code to call

3.4. AGILE CRYPTOGRAPHIC FRAMEWORK REQUIREMENTS 21

the functions salsa20 keygen() and salsa20 encrypt(data, k) instead
of the functions making use of aes128. The change may appear to be simple
in this pseudocode, but in practice, there are usually a numerous number of
occurrences, and the structure containing the key or the cipher may differ
according to algorithms, thus the data structures need to be adapted. This
adaptation can require more changes, causing a hard time when migrating
cryptographic algorithms.

 Source code

main() {
 k = aes128_keygen()
 data = "hello world"
 payload = aes128_encrypt(data, k)
}

 aes128

aes128_keygen();
aes128_encrypt(data, k);
aes128_decrypt(payload, k);

 salsa20

salsa20_keygen();
salsa20_encrypt(data, k);
salsa20_decrypt(payload, k);

Figure 3.1: Current use of cryptography

Figure 3.2 shows how the agile use of cryptography could look like if
we add a layer of indirection. The source code would not directly call the
implementation of specific cryptographic algorithms, but instead call generic
cryptographic functions exposed by an agile framework, which would be a
middleware. This middleware would be configured to redirect the function
call to an appropriate function, defined by the middleware configuration.
Hence, taking the example, the source code will be updated to call the
generic enc keygen() function, returning a key for the selected symmetric
encryption algorithm, in a generic encryption key format. The software
developer does not have to care about which algorithm to use, and has a
less risk to introduce cryptography misuse. An algorithm migration in this
setting would be easy to manage. The configuration of the agile framework
should be changed, for instance replace the encryption algorithm set to
aes128 to salsa20, which is a single line to be modified. However, if data
is already stored encrypted, this solution does not solve the problem of
encrypted data migration, that we will discuss later.

3.4.2 Interface of cryptographic implementations

We now describe the interface between the cryptographic middleware and
the cryptographic algorithms implementation, which correspond to the link
iii. from Figure 3.3. The cryptographic algorithms implementations should
have an interface as simple as possible, without compromising any secu-
rity. The agile cryptographic framework would certainly need to have a
specific way to handle each specific algorithm while sorting the algorithms

22 CHAPTER 3. CRYPTOGRAPHIC AGILITY

 Source code

main() {
 k = enc_keygen()
 data = "hello world"
 payload = enc_encrypt(data, k)
}

 aes128

aes128_keygen();
aes128_encrypt(data, k);
aes128_decrypt(payload, k);

 salsa20

salsa20_keygen();
salsa20_encrypt(data, k);
salsa20_decrypt(payload, k);

 Agile framework

enc = "aes128"
hash = "sha256"
...

Figure 3.2: Agile use of cryptography, adding a layer of indirection

MiddlewareSource code Algorithms
implementation

Configuration
interface

i. iii.

ii.

Figure 3.3: Interactions of the cryptographic middleware

by categories, and only exposing these categories to its interface. Thus,
each algorithm implementation must belong to one or multiple algorithm
categories, for instance using tags, and must respect the constraints of this
category. For instance, a symmetric encryption algorithm should have an
interface containing at least an encrypt and a decrypt functions, and op-
tionally containing a key generation function. For some algorithms, the key
is required to be a random sequence of bytes, and thus can be generated di-
rectly by the middleware. For each implementation, the parameters given to
the mandatory functions can differ, but the functionality has to be the same,
i.e encrypt an array of byte with the given key. Additional parameters, such
as Initialization Vectors and Nonces can be handled by the middleware, to
have a flat interface for all algorithms in the same category.

The interface itself should be agile, it should be easy to add new crypto-
graphic algorithms to the framework. Ideally, the implementations should
also handle versioning, and all versions should be accessible to the middle-
ware. In some cases, a cryptography policy will require to use a specific
version of an algorithm that has been in use for many years and has proven
to be safe, and in some other cases, the policy will require to use the last
version with the last features, but it might have undiscovered flaws. As
implementations may be subject to vulnerability patches, performance im-
provement or other light changes, the middleware should be able to select
which version to use according to the context. The agile framework should
be able to smoothly update from one version of an algorithm implementa-
tion to another, for example after a vulnerability is discovered and a patch

3.4. AGILE CRYPTOGRAPHIC FRAMEWORK REQUIREMENTS 23

is issued. Thus, the interface is supposed to stay the same between different
versions, if possible.

3.4.3 Interface of the source code

We describe in this subsection the interface that the cryptographic middle-
ware exposes to developers building source code, which correspond to link i.
on Figure 3.3. The interface of the framework should be as simple as possible
to use. This would make cryptography more accessible to developers, and
would avoid implementations flaws in applications as not all developers have
a background in security. The interface should expose all types of functions
that could be of use for a programmer, i.e key exchange, symmetric and
asymmetric encryption, hash, signature, message authentication codes etc.
And the programmer should be able to specify some preferences through the
interface, for instance the security level or digest size. These settings should
of course be handled in an agile way on the program side, they can for ex-
ample be defined in a file with all constants or in a dedicated cryptography
policy file.

Limiting direct access to cryptographic algorithms could cause issues to
some developers building new security schemes, or willing to use directly a
specific library. These developers may tend not to use an agile framework
if the framework limits them in the cryptographic primitives they can use.
Moreover, as composability agility is a goal of cryptographic agility, security
experts should be able to access all the libraries used by the middleware.
As stated before, the interface should be kept simple to use, and exposing
all primitives would have a negative impact. Keeping a simple interface for
most users and having an expert mode for experienced security developers
seems to be an optimized trade-off.

Ideally, the middleware would also serve as a key manager, so that the
programmer does not have to handle keys and store them. This functionality
would add key management challenges to the middleware, which depend on
the nature of the middleware itself. Hence, we will use the abstraction that
the agile framework acts as a key manager and discuss these challenges later.

3.4.4 Configuration interface

The configuration interface is the interface from which we can set up the
agile framework, specifying which and how cryptography must be used. This
interface is the link ii. from Figure 3.3. This interface has to be as complete
and agile as possible, to provide a high level of agility to the users. It is
through this interface that a cryptographic policy should be given as input
to the cryptographic framework, defining which cryptographic algorithms
should be used. It is also through this interface that an expert mode could be
enabled. There are multiple designs possible for the configuration interface.

24 CHAPTER 3. CRYPTOGRAPHIC AGILITY

A very simple configuration interface would be to maintain a text, JSON
or YAML file at the root of the project, containing a simple cryptographic
policy. This file needs to have a standard format, and a specific name, so that
the middleware is able to find the configuration file, and parse it to select the
appropriate algorithms. Retiring a cryptographic algorithm and replacing
it by another one would be as simple as changing the appropriate line in
the cryptographic policy that is parsed by the middleware. This solution is
simple to implement, and successfully provide cryptographic agility.

Figure 3.4 describes what the architecture of this design would look like.
There is a crypto.yaml file in the Developer Files, which can be the root
of the project. This file describe which cryptographic algorithms should
be used for encryption, hashing and signature. The libagilecrypto

have generic types that are defined, for example the EncryptionKey that is
described. The configuration file will be parsed by the middleware, during
its initialization, and the content of the file will define how the functions
will behave, see the enc keygen() function as example. This function will
redirect to the algorithm that is read in the crypto.yaml file. This function
will return a generic encryption key object, with defined encryption and
decryption methods. These methods are the ones exposed by the selected
cryptographic algorithm implementation.

Another possibility for configuration interface would be to run a graph-
ical interface, for instance in the form of a dashboard. This graphical inter-
face could guide the user to design an appropriate cryptography according
the the user’s needs. Moreover, the dashboard could list all keys and certifi-
cates that are used, encrypted files location, and more details that could be
useful for developers. A cryptographic inventory could easily be extracted
from the cryptographic policy, and a risk assessment can be made. For
the risk assessment, it would be possible for the middleware to detect if a
cryptographic key is used multiple times, and flag it to the user. Moreover,
having an interactive interface could give more granularity to cryptography.
For example, if there are two uses of cryptographic hash functions in the
application, with different needs, it would be possible to manually select
which algorithm is used in each case through the dashboard.

If the middleware has the capability to scan the source code of the ap-
plication, it could analyze the function calls from the source code to the
functions it exposes, and report any inappropriate use. The scan could also
discover static uses of cryptography that are to be avoided. This would
reduce the number of implementation errors.

A security developer using the expert mode would be able to define new
groups of algorithms and modify the interface between the framework and
the source code, to make it as agile as possible. Through the configura-
tion dashboard, security developers or CISOs could also add bindings to
alternate cryptographic algorithms implementations that are not included
by default. It would allow them to add proprietary implementations to the

3.4. AGILE CRYPTOGRAPHIC FRAMEWORK REQUIREMENTS 25

m
ai

n(
) {

 k

 <
- e

nc
_k

ey
ge

n(
)

 d
at

a
<-

 "
he

llo
 w

or
ld

"
 p

ay
lo

ad
 <

- k
.e

nc
ry

pt
(d

at
a)

 s

en
d_

ov
er

_t
ls

(p
ay

lo
ad

, d
es

tin
at

io
n)

} s

ou
rc

e
co

de

en
cr

yp
tio

n
 =

 "
ae

s1
28

"
ha

sh

=
"s

ha
25

6"

si
gn

at
ur

e
=

"e
cd

sa
"

 c
ry

pt
o.

ya
m

l
st

ru
ct

 E
nc

ry
pt

io
nK

ey
 {

 k
ey

: b
yt

es

 a
lg

or
ith

m
: s

tri
ng

 e

nc
ry

pt
(b

yt
es

) -
>

by
te

s
 d

ec
ry

pt
(b

yt
es

) -
>

by
te

s
} in

te
rfa

ce
 ..

. {
 }

in
it(

) {
 p

ar
se

 c
ry

pt
o.

ya
m

l }

en
c_

ke
yg

en
()

{
 r

et
ur

n
En

cr
yp

tio
nK

ey
 {

 k

ey
: a

es
12

8_
ke

yg
en

(),

 a

lg
or

ith
m

: "
ae

s1
28

",

 e

nc
ry

pt
(b

yt
es

):
ae

s1
28

_e
nc

ry
pt

(b
yt

es
),

 d
ec

ry
pt

(b
yt

es
):

ae
s1

28
_d

ec
ry

pt
(b

yt
es

),
 } li

ba
gi

le
cr

yp
to

ae
s1

28
_k

ey
ge

n(
) {

 ..
. r

et
ur

n
ke

y
}

ae
s1

28
_e

nc
ry

pt
(b

yt
es

) {
 ..

. r
et

ur
n

by
te

s
}

ae
s1

28
_d

ec
ry

pt
(b

yt
es

) {
 ..

. r
et

ur
n

by
te

s
}

 a
es

12
8_

im
pl

em
en

ta
tio

n

de
s_

ke
yg

en
()

{ .
..

re
tu

rn
 k

ey
 }

de
s_

en
cr

yp
t(b

yt
es

) {
 ..

. r
et

ur
n

by
te

s
}

de
s_

de
cr

yp
t(b

yt
es

) {
 ..

. r
et

ur
n

by
te

s
}

 d
es

_i
m

pl
em

en
ta

tio
n

sh
a2

56
_d

ig
es

t(b
yt

es
) {

 ..
. r

et
ur

n
by

te
s

}

 s
ha

25
6_

im
pl

em
en

ta
tio

n

D
ev

el
op

er
 F

ile
s

Ag
ile

 C
ry

pt
og

ra
ph

ic
 L

ib
ra

ry
C

ry
pt

og
ra

ph
ic

 A
lg

or
ith

m
s

Im
pl

em
en

ta
tio

ns

F
ig

u
re

3.
4:

E
x
am

p
le

of
an

ag
il
e

cr
y
p

to
gr

ap
h

ic
li

b
ra

ry
ar

ch
it

ec
tu

re
.

26 CHAPTER 3. CRYPTOGRAPHIC AGILITY

same framework and the centralize all cryptography at the same place. It
would then be possible to export a cryptographic inventory or cryptography
configuration, including potential additional third party algorithms imple-
mentations, and share this configuration at a team or company level. This
would allow a company to have an unified cryptographic policy, that could
be adapted for each project.

3.4.5 Data structures

The agile cryptographic framework should define agile data structures to
contain data linked to cryptography, i.e keys and cipher payloads. For ci-
pher payloads, a structure could be as described in Listing 3.4. The structure
contains which algorithm and mode have been used to produce the cipher,
the encrypted data, and optionally any Initialization Vector (IV), the loca-
tion of the encryption key etc. This kind of data structures would allow the
agile framework to handle all ciphers object similarly with generic methods.
Of course a support for all algorithms is needed, but having a generic object
structure adds a level of indirection and allows the algorithm, and payload
to be changed while keeping the same object. These data structures are
returned through the interface with the source code, to that the developers
do not need to update the data structures when a migration is performed.

1 Cipher structure {

2 Algorithm string

3 Mode string

4 Payload byte[]

5 IV byte[]

6 KeyLocation string

7 ...

8 }

Listing 3.4: Possible Cipher object structure

3.4.6 Migration of encrypted data

When updating an encryption algorithm which encrypted data is then stored
on disk or in the cloud, it is best to migrate the encrypted data as well. For
instance, in an instant messaging application storing messages encrypted
using DES on the host, a migration from DES to AES would cause new
encrypted messages to be stored in a different format that the old encrypted
messages that have been stored in the past. This is undesirable because
usually a migration occurs when an algorithm is considered as insecure,
it should not be used anymore, even for data that was using it before,
otherwise it becomes vulnerable. Keeping data encrypted using multiple
algorithms after a migration cause the application to handle the decryption
of two types of encrypted data, without knowing which message should be
decrypted using which algorithm.

3.4. AGILE CRYPTOGRAPHIC FRAMEWORK REQUIREMENTS 27

The middleware can be useful in this migration task. If the agile cryp-
tographic framework also serves as key manager, and knows where the en-
crypted data is stored, it can then load the encrypted data, decrypt it using
the decryption key, generate new keys for the replacement algorithm, en-
crypt the plaintext data using the new encryption key, and overwrite it at
the location it was stored. In the case in which the middleware does not
act as a key manager, an alternative would be to keep an inventory of cryp-
tographic primitives, such as keys, Initialization Vectors etc. and when a
migration is needed, the inventory is passed to the middleware which is able
to perform the migration as described previously. It is important to note
that it is impossible to migrate cryptographically hashed data from one al-
gorithm to another, as cryptographic hash functions are one-way and thus
cannot be reverted. We discuss how to address this challenge more in details
in Subsection 3.6.2.

Figure 3.5 pictures a possible design of an agile framework supporting
encrypted data migration. On the right hand side, there is a dashboard,
which represent the interface for the Agile Cryptographic Library. In the
Developer Files, for instance at the root of the project, there is the same
crypto.yaml file as described before, and there is in addition, the location of
the encrypted files that are stored on the disk. The source code of the sample
application has been modified and is not sending encrypted data over the
network, but storing it on disk. The libagilecrypto service exposes the
store encrypted function, which given a ciphertext structure, containing
metadata such as the algorithm that was used for encryption, writes the
sequence of bytes at the given location, and updates the file containing
the location of encrypted files. This allows to keep track of all encrypted
files that are stored on disk, with the algorithm that has been used for
encryption. libagilecrypto also contains a migrate function, that will
migrate the encrypted file at the given path to a new algorithm that is
passed to the function. It is of course necessary to pass the key used for
encryption to the function. We can imagine that the libagilecrypto also
serves as a key manager and thus can provide the key. Using this function,
a user can simply migrate encrypted files from the dashboard the graphical
interface. This way, migration can be perform only by interacting with the
middleware graphical interface, and without any modification to the source
code. When the main program will interact with the data again, it will do
so through the middleware, and will not notice the difference, even though
the algorithm was changed.

3.4.7 Nature of the agile cryptographic framework

The cryptographic agile framework could be implemented in different ways
while offering the interfaces described above. We will discuss the forms that
the middleware could take, and describe the related trade-offs.

28 CHAPTER 3. CRYPTOGRAPHIC AGILITY

encryption = "aes128"
hash

= "sha256"
signature

= "ecdsa"

 crypto.yam
l

...
init() { parse crypto.yam

l }

encrypted_files_locations = list()

store_encrypted(C
ipher c, path) {

 encrypted_files_locations.update(path, c)
 os.w

rite_file(path, c.to_bytes())
} m

igrate(path, new
Algo, key) {

 old_cipher = os.read_file(path)
 data = old_cipher.decrypt(key)
 new

_key = enc_keygen(new
Algo)

 new
_cipher = new

_key.encrypt(data)
 os.w

rite_file(path, new
_cipher.to_bytes())

} ... libagilecrypto

D
eveloper Files

Agile C
ryptographic Library

m
ain() {

 k <- enc_keygen()
 data <- "hello w

orld"
 payload <- k.encrypt(data)
 send_over_tls(payload, destination)
 location = "/etc/m

yapp/hellow
orld"

 store_encrypted(payload, location)
} source code

[("/etc/m
yapp/hellow

ord",
 "aes128"),
 ("...", "...")]

 locations.yam
l

D
A

S
H

B
O

A
R

D

Inventory

- aes128
- sha256
- ecdsa
- ...

Policy

Allow
ed Encryption Algorithm

s:
{ aes128, aes256 }
Allow

ed H
ash Algorithm

s:
{ sha256, sha512, sha3, BLAKE3}
 ...

W
arnings

U
nsafe M

D
5 is

used in a
dependency.

Encrypted Files

- "/etc/m
yapp/hellow

orld":aes128
- ...

M
igrate

F
ig

u
re

3.5:
E

x
am

p
le

of
an

agile
cry

p
tograp

h
ic

lib
rary

h
an

d
lin

g
en

cry
p

ted
d

ata
m

igration
.

3.4. AGILE CRYPTOGRAPHIC FRAMEWORK REQUIREMENTS 29

The most intuitive to implement such an agile cryptographic framework,
is to build it as a library. This library would act as a new layer of indirection,
the source code would call the cryptographic functions exposed by the library
instead of calling directly the implementations. The library will redirect the
function calls to cryptographic algorithms from the source code to the actual
algorithm implementation in an agile way, and return agile data structures.

An agile cryptographic library can be built as a static library or as an
dynamic library. The difference between static and dynamic libraries, is
that a project using a static dependency has to be compiled again if the
library is to be updated, which is not to case for dynamic libraries. After
a dynamic library gets updated, it only needs to be recompiled, and all
binaries relying on it can then use the updated version. Moreover, when
using a static library, the static library code get duplicated resulting in
larger project binaries, whereas for dynamic libraries, the dependency is
only linked so there is no code duplication. Hence, using dynamic libraries
to build a cryptographic middleware would provide a more agile library, as
it could be updated without having to recompile all code depending on the
middleware.

The cryptographic framework could also be built as a service. This
solution provide more agility than a library but also poses a number of
challenges. A possibility for an agile cryptographic framework is to use
Cryptography-as-a-Service (CaaS). This solution would mean to send re-
quests over the network to a remote service provider to use cryptographic
functions. However, CaaS is not optimized for a generalized use of cryp-
tography, as some operations should be performed offline, for instance disk
encryption operations. Thus CaaS would not be an appropriate candidate
for an agile cryptographic service.

However, an agile cryptographic framework could be designed as a Mi-
croservice. An agile cryptographic microservice would run locally on a host,
and communicate with process through the local network stack. A microser-
vice could be updated without the programs using it noticing the update,
as long as the interface stays the same. A microservice can have a single
implementation, and one interface library for each programming language,
thus centralizing the critical cryptographic operations in a single trusted
implementation. Moreover, the same cryptographic algorithms implemen-
tations will be used independently of the language of the source code. An
example of such an architecture is shown on Figure 3.6. In this example,
the service is implemented in the C programming language, and it makes
use of cryptographic algorithms implementations made in C. A Go language
client making the bridge between the Go language libraries and the service
is described as libinteraction. This library will be imported in all Go
source code willing to make use of the cryptographic service, and the role of
libinteraction is to expose the same interface as the service itself, but for
Go applications, and to translate these requests to send them over the local

30 CHAPTER 3. CRYPTOGRAPHIC AGILITY

m
ain() {

 k <- enc_keygen()
 data <- "hello w

orld"
 payload <- k.encrypt(data)
 send_over_tls(payload, destination)
} source code

encryption = "aes128"
hash

= "sha256"
signature

= "ecdsa"

 crypto.yam
l

struct EncryptionKey {
 key: bytes
 algorithm

: string
 encrypt(bytes) -> bytes
 decrypt(bytes) -> bytes
} interface ... { }

init() { parse crypto.yam
l }

enc_keygen() {
 return EncryptionKey {
 key: aes128_keygen(),
 algorithm

: "aes128",
 encrypt(bytes): aes128_encrypt(bytes),
 decrypt(bytes): aes128_decrypt(bytes),
 } agilecryptoservice

aes128_keygen() { ... return key }

aes128_encrypt(bytes) { ... return bytes }

aes128_decrypt(bytes) { ... return bytes }

 aes128_im
plem

entation

des_keygen() { ... return key }

des_encrypt(bytes) { ... return bytes }

des_decrypt(bytes) { ... return bytes }

 des_im
plem

entation

sha256_digest(bytes) { ... return bytes }

 sha256_im
plem

entation

D
eveloper Files

C
ryptographic Algorithm

s
Im

plem
entations

language specific interface
com

m
unicating w

ith the
agile crypto service over
local netw

ork

 libinteraction

Agile C
ryptographic Library

C
G

o

F
ig

u
re

3.6:
E

x
am

p
le

of
an

agile
cry

p
tograp

h
ic

serv
ice.

3.5. PROOF OF CONCEPT: SIGNATURE MICROSERVICE 31

network to the service. Porting the service to a new programming language
would only require to build a client in this language to make the link be-
tween the language and the service. The service would be compatible and
identical for all platforms and all languages, which makes it simple to use.
The service could easily run a graphical interface for configuration allowing
to configure the service in an interactive way. A service also offer the possi-
bility to support add-ons, for instance to support cryptographic operations
on hardware. However, a cryptographic service must make sure that oper-
ations are isolated, as all process would share the same microservice. To
provide agility, each application using the microservice should have its own
cryptographic policy, and thus the apps must authenticate at each request,
to allow the service to handle the service correctly. Furthermore, if the ser-
vice also acts as a key manager, it is critical that the keys can be accessed
only by the owner process, and not by other processes. The authentication
would add complexity to the microservice.

We will now compare a dynamic agile cryptographic library with an agile
cryptographic microservice. The dynamic library would be faster to perform
operations, as there is no data to serialize and send over the local network
stack. The dynamic library does not need the applications to authenticate,
which makes it even more optimized compared with a microservice. A mi-
croservice would use more resources as a dynamic library, as it must always
be running on the host. However, the dynamic library needs to be built in
multiple programming languages for a better accessibility, and each library
has to use cryptographic algorithms implementations written in the same
language, or to make bridges to other languages. A microservice architec-
ture would allow to have a single implementation, making use of a single
set of cryptographic algorithms implementations and making them accessi-
ble to multiple programming languages. It can also be customized with a
graphical interface and add-ons, providing more agility compared with the
dynamic library. Hence, a dynamic library is to be preferred for perfor-
mance optimization, and a microservice is to be preferred for a better level
of agility.

3.5 Proof of concept: Signature microservice

For the purpose of this project, we built a signature microservice serving as
a simple proof of concept for larger cryptographic services. The goal of this
service is to demonstrate that it is possible to build a simple microservice
having bridges to multiple programming languages, convenient for use. In
this case, we decided to use Rust and Go. We consider that the system as
trusted: communications between client and server are not encrypted, and
we consider that the server does not leak any information.

32 CHAPTER 3. CRYPTOGRAPHIC AGILITY

3.5.1 Design

This microservice is a very simple Rust application communicating with
client over TCP. The microservice has a YAML configuration file, where
the signature algorithm to be used is defined. There are only two signature
schemes available for this simple proof of concept: rsa and ed25519. When
starting, it will parse the YAML configuration file, and open a TCP socket.
In the very simple client, an user can input a message to be signed by the
service. The message will then be transmitted over TCP to the signing
service. The signing service will get the signature request, compute the sig-
nature of the given string using the algorithm described in the configuration
file and a key derived from a constant seed. It then sends the signature over
TCP back to the client. The client can also request the service to verify
a signature for a given string, for the same constant key. The service will
return true if the signature verifies successfully and false otherwise.

Each simple client implementation is using a simple library interface
which exposes the functions available for the microservice, and handles com-
munication with the server, as depicted in Figure 3.7. Each interface library
exposes data structures, such as generic signature digest here, and func-
tions, such as a signature function, that will be usable by all projects in the
same programming language. Hence, if we want to make the microservice
compatible with more languages, we must build a library in this language
serving as interface with the micro-service.

Rust Server

config.yaml

available signature schemes:
rsa, ed25519

signature: ed25519
key: CAgICAgICAgICAgICAgI
CAgICAgICAgICAgICAgICAg=Go app Go library

sign(data)
Protobuf {
 Action: signature,
 Data: data }

Protobuf {
 Action: response,
 Algorithm: ed25519,
 Digest: digest }

Digest {
 Algorithm: "ed25519",
 Length: 128,
 Payload: digest }

config parsed by
the server

Rust app Rust library

same interactions for Rust as for Go

Figure 3.7: Signature microservice architecture

We built two different clients, one in Rust and one in Go. The clients
communicate with the service over TCP using Google’s Protocol Buffers for-
mat4. This format allows data structures to be exchanged between multiple

4https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/

3.6. CRYPTOGRAPHIC AGILITY STRATEGY 33

programming languages, making the crypto-service agile. We decided to use
this format, as it has a low data overhead and is available for a large number
of programming languages.

3.5.2 Results

We were happy to see that this format of microservice was working as ex-
pected. The interactions between the client and server in multiple program-
ming languages was successful and showed the agility that can be brought
by this kind of service. We have seen that both Rust and Go clients could
successfully manage different signature formats, according the type of signa-
ture performed by the server. Thus, it is possible to create a generic digest

structure that is able to contain a signature digest of variable length, assess-
ing the agility of this microservice.

However, it made us realize the complexity of a more complete agile
cryptographic framework exposing more primitives. Key management is
another challenge that needs to be addressed. To simplify the question, we
let the server manage the keys, but in a real world application we either
need a different server process for each running application, or we need to
authenticate each application using the service, to make sure keys can be
accessed only by the right application. Otherwise, the library interface could
generate the key pairs, and send them over a channel with confidentiality
and integrity to the service. Then the key pairs could be handled by the
application or by the library interface instance.

We decided not to go further in this direction, as it would take a lot of
efforts to produce a tool that would be usable in practice.

3.6 Cryptographic Agility Strategy

3.6.1 Migration to an agile framework

The switch from our current software implementations to new cryptographic
agile frameworks requires a consequent migration. Indeed, to avoid the huge
manual migration to post-quantum cryptography, a huge manual migration
to a cryptographic agile framework is necessary. This means that all legacy
software must be updated. Once a cryptographic agile framework is avail-
able, all function calls to cryptographic algorithms should be replaced with
function calls to the corresponding functions from the agile framework. This
migration would be hard to automate, as the replacement functions depend
on the context in which the old function were used. This also implies that
there is a risk that the migration is not done correctly, and this may intro-
duce vulnerabilities in the source code. On the other hand, the migration
might correct some misuses of cryptographic functions.

34 CHAPTER 3. CRYPTOGRAPHIC AGILITY

However, this migration can be facilitated. As updating manually each
function call is a tedious task, some software could highlights the parts of
the code that have to be updated. A cryptographic inventory tool could
perform this work. It would scan all the dependencies of a given project,
and return all of the function calls to cryptographic algorithms. A cryp-
tographic inventory would be very helpful, as it is able to scan the depen-
dencies’ dependencies, and this recursively. This allows developer to filter
their dependencies using not agile cryptography, and to replace them by
agile libraries. As a software relies on its dependencies, it can be fully agile,
only if all of its dependencies are fully agile too. We can imagine that an
automated tool can suggest a replacement for cryptographic function calls,
but the change has to be validated by a developer.

The first step to get to cryptographic agility, is to choose a cryptographic
policy that will be applied on the targeted software. One cryptographic agile
framework should be selected, before starting the migration process. Once
this is done, the next task is to make an inventory of the all cryptographic
primitives used by a software, using for instance a cryptographic inventory
tool. Once identified, they should be replaced by function calls to the agile
framework, selected beforehand. All libraries using non agile cryptographic
implementations should be replaced too. Then, the cryptographic policy
should be given as input to the cryptographic framework, and the source
code migration is complete. The software will be able to benefit from the
cryptographic agility offered by the framework.

3.6.2 Data migration

We discuss in this section the consequences of switching to a cryptographic
agile framework from a legacy code, and changing the cryptographic algo-
rithms in use. Hence, this change of algorithm will require a migration of
data. However, it is also possible to migrate to an agile framework, while
keeping the same algorithms used before the migration.

Encrypted data migration

In parallel of the source code migration to a cryptographic agile framework,
it is necessary to migrate the stored data encrypted with the old scheme.
This migration is necessary, as the new cryptographic framework will not be
able to decrypt and make use of the already encrypted data. For this pur-
pose, we can imagine that an inventory tool will be able to list all encrypted
data, linked with a given application, and list the associated algorithms and
key locations. Then, a tool taking as input (1) the data location, (2) the
cryptographic algorithm and parameters and (3) the secret key would be
able to decrypt the data, and re-encrypt it using the agile framework. Note
that this tool would ideally be integrated in the framework.

3.6. CRYPTOGRAPHIC AGILITY STRATEGY 35

Hashed data migration

The migration of hashed data is unfortunately not this simple. For exam-
ple, most password based authentication systems hash passwords to avoid
storing them in clear text, and store only the hash digest and the associated
salt. However, hashing cannot be reversed by design, because there are resis-
tant against preimage attacks. Consequently, it is impossible to reverse the
hash operation to recover a password, and to hash it again using a different
algorithm. There are two possibilities for the migration of hashed data.

1. Password onion: This solution, reported to by used by Facebook
[8] consists in having multiple layers of hash functions. For example,
Facebook’s password onion is represented in Algorithm 1. The layers
consist in a sequential combination of hash functions. We can see that
Facebook used to hash its passwords using MD5, then they migrated
to SHA-1, and they needed to generate a salt. Thus the digest was the
result of the HMAC using SHA-1, with as input the old MD5 digest,
and a random salt. We can see that since then, they added a PRF,
and use scrypt to hash the existing digest, and truncate it with HMAC
to have a decently sized digest.

Algorithm 1: Facebook Password Onion

1 h1 ←− MD5(pw)

2 sa←−$ {0, 1}160
3 h2 ←− HMAC[SHA-1](h1, sa)
4 h3 ←− PRF-Cl(h2) = HMAC[SHA-256](h2,msk)
5 h4 ←− scrypt(h3, sa)
6 h5 ←− HMAC[SHA-256](h4)
7 Return (sa, h5)

The advantage of such a scheme, is that the migration can be done
instantly, using the old digest, and it is somehow flexible, as it will
always be possible to add new layers to the onion. However, when an
user authenticates, the back-end has to go through multiple hash func-
tion, to verify if the password is correct, which introduce complexity,
compared with a single hash function.

2. Require client login: This alternative is simpler, but it requires an
action from the users. Once the user authenticate using their password,
the service hashes the given password using the old hashing algorithm
and the associated salt, and compares the digest with the stored one. If
they match, then the service will be able to hash the correct password
using another hashing algorithm and a freshly generated salt. The
result will replace the user’s entry in the password database.

36 CHAPTER 3. CRYPTOGRAPHIC AGILITY

The simplicity of this method makes it elegant, but it requires all users
to enter their password to migrate successfully, which induce the fol-
lowing drawbacks. (1) All users have to login, this implies that inactive
accounts will not be migrated. The accounts can be removed after a
given period to keep the password database consistent, but this might
be an undesired side effect. (2) The migration takes time. The migra-
tion time depends on the time taken by all users to perform the login
operation, which could take months. (3) The password database need
to support multiple formats. As the updates in the password database
is a long process, both old and new entries will coexist for a while,
and the system should be able to handle old and new authentications
differently, which adds complexity.

Shared secrets migration

When a cryptographic algorithm used to communicate over the network
with a remote host is replaced by another one, shared secrets that were used
to communicate must be migrated too. One solution can be to get a fresh
shared secret, by using a key exchange protocol to derive an appropriate
shared secret. Another solution can be to give the old secret as input to a
Pseudo Random Function (PRF) and then to a Key Derivation Function to
derive a new shared secret for the new algorithm.

3.6.3 Cryptographic Agility in CI/CD

When the source code and data have been migrated, it would be good to add
cryptographic agile tools in Continuous Integration/Continuous Deployment
(CI/CD) pipelines. These tools could perform static source code analysis to
assess that the code is only using agile cryptography. This would prevent
deploying any code that is not cryptographically agile. The CI/CD tool
could be integrated to the cryptographic framework, and provide policy
compliance certifications and risk assessment before the code is deployed.

Chapter 4

Cryptographic Inventory

4.1 Definition

A cryptographic inventory consists in a listing of all cryptographic algo-
rithms and primitives used by a software, a system or a company. Its rep-
resentations can go from a simple text list of cryptographic algorithms to
a complete dashboard giving advice on how to improve the security of a
system. Ideally, a cryptographic inventory of a software would include the
inventory of the software’s dependencies, in a recursive way. There are
multiple ways to build a cryptographic inventory. Some companies decide
to manually build their cryptographic inventory, by reviewing their source
code, and listing every cryptographic primitive in use. There exists auto-
mated scanning tools analyzing source code and binaries and producing a
complete cryptographic inventory.

4.2 Need for Cryptographic Inventory

We discuss in this section the problems that are addressed by cryptographic
inventories. We first focus on current issues, before the migration to post-
quantum cryptography and cryptographic agility. We will then focus on
why a cryptographic inventory is useful, even after we gain cryptographic
agility.

4.2.1 Before Agile Cryptography

A cryptographic inventory can currently help addressing the following chal-
lenges:

1. Compliance: As discussed before, multiple countries introduced di-
verse regulation on data security and privacy, and all company must
comply to these regulations. These regulations may specify which

37

38 CHAPTER 4. CRYPTOGRAPHIC INVENTORY

algorithms to use for specific actions, and may forbid the use of cer-
tain algorithms, considered as unsafe. Moreover, multiple companies
introduced an internal cryptographic policy, as discussed in Section
2.3. These policies are often more restrictive than the regulations, and
developers must make sure that their code is compliant with these poli-
cies. A cryptographic inventory is helpful to prove compliance with a
policy or regulation. It can be shown to internal and external auditors
for reviews. Ideally, the inventory would be made with a certified tool,
missing no use of cryptography and signing the produced inventory.
This kind of inventory would irrefutably certify the compliance of a
piece of software.

2. Risk assessment: Cryptographic vulnerabilities or weaknesses can
be revealed by the inventory as it displays all uses of cryptography. A
Chief Information Security Officer (CISO) can use it to make sure that
no deprecated libraries or algorithms are used throughout a project,
without having to review all of the code manually. They can also verify
that cryptographic algorithms are used correctly, as the inventory can
check whether a nonce have been used twice, or whether a secret key
was really randomly generated.

Moreover, when an algorithm or implementation is found to be vul-
nerable, a CISO can immediately verify if and where it is used in some
of the company software. They can even check how it has been used,
and accordingly plan a way to apply a security patch or use a secure
alternative.

3. Ease of migration: When a cryptographic algorithm is deprecated or
when a better technology should be used, a migration is necessary. A
cryptographic inventory can help engineers in a migration by showing
them which cryptographic algorithms need to be updated, where and
how they are used. The inventory can show to a developer each occur-
rence of function calls that need to be changed, so that the developer
do not miss any.

The cryptographic inventory is a way to facilitate the migration to
an agile cryptographic framework, which in turn will allow a seamless
migration to post-quantum cryptographic schemes. The ultimate goal
of cryptographic inventory is to provide cryptographic agility, meaning
that one can change the cryptographic algorithms used by a system
from an inventory dashboard.

4. Primitives listing: A cryptographic inventory also offer the capa-
bility to list all keys, certificates, passwords, salts etc. that are used
by a system. It is able to retrieve the location where these compo-
nents are stored, for instance on disk or in a cloud. This is useful for

4.3. INVENTORY BUILDING TECHNIQUES 39

system administrators to manage certificates expiration and renewals.
Using such a tool, it would also be possible to verify if some pass-
words, whose hash digest is stored, are exposed in a known password
cracking dictionary. This can show if a key is used multiple times, and
can help developers to determine if the multiple use of a single key is
appropriate.

4.2.2 After Agile Cryptography

After an agile cryptographic framework is in use, the cryptographic inven-
tory tool could be merged with the framework itself. As a cryptographic
policy will be given to the cryptographic framework as input, describing
how cryptography should be used, the inventory will mostly be included in
the policy. However, the inventory can ensure that cryptography is used cor-
rectly, using the agile framework and that a source code contains no static
function call to a specific cryptographic algorithm implementation. It could
also be used to prove that a software complies with local data security reg-
ulations, or list all the primitives that are used by the framework. Hence,
adding the inventory tool to the cryptographic agile framework definitely
makes sense.

4.3 Inventory building techniques

There are multiple techniques to build a cryptographic inventory. (1) Man-
ual inventory: developers have to go through the source code, and list all
cryptography in use. This task is time consuming, tedious and inaccurate,
as developers could miss a cryptographic function. (2) Static source code
analysis: an automated tool will scan the source code to list all cryptography
in use by a software. This method is automated and fast to operate, and
exhaustive. However, it will detect cryptographic functions that may never
be used in practice, as it scans all possible execution paths. For instance,
many cryptographic libraries include insecure algorithms such as MD5 or
DES for legacy reasons, but the static analyzer will be unable to determine
if these functions are actually used, and they will be flagged. Moreover, it is
a challenging task to check if cryptographic algorithms were used correctly,
using a static code analyzer (3) Run-time analysis: this method consists in
tracing run-time execution to detect which functions are called. It detects all
cryptography that is actually in use, but requires the software to run to be
able to perform a scan. However, as different executions may differ, differ-
ent cryptography could be used depending on the context, and performing
symbolic execution to test all execution paths is not always possible, and
would essentially give the same result as a static analysis. However, run-time
analysis can be combined with fuzzing to get a good cryptography coverage.

40 CHAPTER 4. CRYPTOGRAPHIC INVENTORY

4.4 Existing Cryptographic Inventories

4.4.1 Cryptosense Analyzer

Cryptosense has a cryptographic inventory solution that they sell as a ser-
vice, Cryptosense Analyzer. This inventory solution is consequently closed
source, and the only information we have is from their whitepaper [6]. This
whitepaper is mostly business oriented, explaining what is a cryptographic
inventory, and why it would be useful. It states that their inventory service
combines both static and run-time analysis approaches. The Cryptosense
Analyzer has coverage for Java JCE, .NET cryptography, PKCS#11 and
OpenSSL and provides an inventory of algorithms, key-lengths, libraries,
modes of operations, passwords, parameters, vulnerability analysis and cryp-
tographic policy enforcement. It can be integrated to Continuous Integra-
tion (CI) pipelines thanks to its APIs and plugins for Maven, Gradle and
Jenkins.

4.4.2 InfoSec Global AgileScan

InfoSec Global also developed an automated cryptographic inventory solu-
tion, AgileScan, which is sold as a service. Thus, it is closed source, and we
were not able to analyze how the inventory is actually being built. They
published a whitepaper [10], explaining mostly why a cryptographic inven-
tory is necessary for companies, and describing very briefly the technologies
they are using. AgileScan has a list of known cryptographic libraries and
will detect their use, and determine if the version of the library is up-to-date,
or if it is outdated and contains security flaws. But it is not mentioned how
they detect the use of a library. They also inspect the executed binaries to
determine which cryptographic algorithm is used. AgileScan also includes a
common configuration fault detection mechanism, but no precise description
is given.

4.5 Inventory interface

In this section, the terms package, library and functions are used. A package
is the Go term for a library, which is an implementation that can be imported
and used by other programs. Thus both terms are equivalent in this section.
A library contains functions, that are individual programming functions
implementations that can be called through the library interface. Each
function belongs to a specific library. Dependencies can be seen as libraries
or functions. For example, we can say that libraryA depends on libraryB
and libraryC , or that function1 depends on function2 and function3. But,
in the same setting, we can also say that function1 depends on libraryB

4.5. INVENTORY INTERFACE 41

and libraryC if function2 belongs to libraryB and function3 belongs to
libraryC .

4.5.1 Dashboard

Once the inventory is built, either by static code analysis or by run-time anal-
ysis, it has to be displayed in a human readable way to be useful. Ideally,
a cryptographic inventory would have an interactive dashboard interface,
allowing developers to better assess risk, visualize dependency tree, certify
compliance etc. The dashboard should show insights for each library, for
instance which functions are publicly exposed, which functions are used by
another program, what are the dependencies for each function. The dash-
board would also contain a text editor, allowing the developer to modify the
source code from within the inventory dashboard. The dependency trees
should be displayed in a human readable way, as they often appear to be
very complex. A solution for this is to make the diagrams interactive, to
display only a part of the dependency tree, and allow the user to navigate
through the tree. We describe the formats of the tree diagrams below. Po-
tential features of the dashboard will be displayed, as it should be scrollable,
features will be shown in different figures.

Figure 4.1: Potential cryptographic inventory dashboard look

Figure 4.1 represent how the inventory could look like, in a simplified
way. As the dashboard would contain a lot of features, not all of them can
fit on screen at the same time. Figure 4.1 includes a simple risk assessment
chart, listing how many function calls to cryptographic function are consid-
ered as Broken, Unsafe or OK according to a categorization given as input to
the inventory. It also include a list of all cryptographic libraries on which the
scanned software relies directly or indirectly. The list contains search and

42 CHAPTER 4. CRYPTOGRAPHIC INVENTORY

filter options, for instance to show only unsafe cryptographic algorithms, or
post-quantum algorithms in use. On the right, the interactive dependency
graph would show the partial package or function dependency tree. As it
is interactive, the user can navigate through the graph by clicking on the
nodes they are interested in, to explore their dependencies. Furthermore,
the search or filter function from the cryptographic dependencies list can be
use to filter the nodes appearing on the interactive dependency graph, for
instance to display only the packages that rely on a specific cryptographic
library.

Figure 4.2: Cryptographic dependencies list along with text editor providing
insights on the use of cryptographic algorithms

Figure 4.2 includes the same cryptographic dependencies list as shown
in Figure 4.1. One entry is selected in the list, and insights are shown for
this package. Below this list, are printed all the functions of the package
that are used by the project or one of its dependencies. The right hand
side contains a code snippet where one of the functions from the package is
used. The cryptographic inventory is able to scan the source code, and add
insightful comments on the usage of cryptographic algorithms. For instance,
in this screenshot, the program advises against using the MD5 algorithm to
hash a password, and recommend to use a salt for password hashing. The
developer can then directly edit the source code in the text window, on the
right.

Figure 4.3 represents the full package and function inventory of the
scanned project. The left column contains the list of all packages on which
the project is relying, and the right column contains all the functions that
can possibly be called by the software, ordered by package. Of course this list
also supports search and filter capabilities, and can interact with the other
components of the dashboard, such as the interactive dependency graph
from Figure 4.1, or the text editing interface from Figure 4.2.

Figure 4.4 has a text editor on the left hand side, and has the associated
function’s dependency graph on the right hand side. The dependency graph
is interactive, and has filter options, to print only the selected nodes, to
keep it understandable. It is for example possible to choose the depth of the
graph, or hide the standard package dependencies.

4.5. INVENTORY INTERFACE 43

Figure 4.3: List of all functions on which the target program is depending
on, ordered by package

Figure 4.4: Interactive function dependency graph for a code snippet

Figure 4.5: Potential cryptographic inventory dashboard look

44 CHAPTER 4. CRYPTOGRAPHIC INVENTORY

Figure 4.5 represents an interactive call graph browser. It is a tool
to navigate a large dependency graph, choosing the origin and destination
packages or functions. For example, in Figure 4.5 the origin function is the
main() function from the scanned source code and the destination package
is crypto/md5. The paths from the origin to the destination are printed in
the window. It is possible to move the focus zone, on blue on the Figure to
display all functions or packages that depend on the selected node, or these
on which the selected node depends on. This feature is useful to understand
which part of the source code is making an indirect use of specific functions
or packages.

4.5.2 Output format

Ideally, the inventory should be exportable in a text format, JSON for exam-
ple, so that it could be used by other software analyzing the content of the
inventory. The list of all dependencies of a program can be called a Software
Bill of Material (SBoM), describing all the software components. A SBoM
is a common way to list a software dependency, although there are multiple
ways to list the dependencies. In cryptography, the list of all cryptographic
functions that are used by a software can also be called a Cryptographic
Bill of Material (CBoM). The Software Package Data Exchange (SPDX)1

is a special file format introduced by the Linux Foundation, and offers the
possibility to represent SBoMs. SPDX was initially built to document in-
formation on software licenses and copyrights under which a software is
distributed, but now also includes a possibility to describe dependencies. It
is an attempt to standardize source code metadata. The upside of using
SPDX to export a cryptographic inventory, is that this format aims to be
a standard, and is likely to be compatible with many applications in the
future. However the downside is that this very complex format was not ini-
tially built to list software dependencies, and it adds complexity to a very
simple data structure to be exported. Thus, an export in the JSON format
would be simpler.

4.5.3 Diagrams

The inventory can also contain a graphical visualization, which is more hu-
man friendly than a large text file. In order to represent dependencies it
is possible to use a directed acyclic graph picturing the relationships of the
different libraries as depicted in Figure 4.6. This diagram was drawn using
Graphviz. However, when the graph is getting more complex, the result
is less human readable. Figure 4.7 is still quite readable, but the full de-
pendency graph of complete projects making use of many libraries make
PDF readers crash when trying to open the file. So, plotting dependency

1https://spdx.dev/

https://spdx.dev/

4.5. INVENTORY INTERFACE 45

graphs this way is good for simple packages or for a partial dependency
graph of a limited depth, but cannot be used for large projects. It is also
possible to build interactive graphs, containing all the required dependen-
cies, but showing only subgraphs that are easily understandable, the graphs
are interactive as the visible dependencies change when a click on a node is
performed. These graphs are not displayed, as this report is unfortunately
not interactive.

strings

strings

unicode/utf8 unsafe errors io sync internal/bytealg unicode

Figure 4.6: Direct dependencies of the Go strings package

sha256

sync

sync/atomic

unsafe

internal/race runtime

internal/cpu

internal/bytealgruntime/internal/atomic

runtime/internal/sys

runtime/internal/math

math

math/bits

io

errors

internal/reflectlite

crypto

hash

strconv

unicode/utf8

internal/unsafeheader

encoding/binary

reflect

unicode

crypto/sha256

Figure 4.7: All dependencies of the Go crypto/sha256 package

Another way to graphically represent dependency relationships, is to
use chord diagrams, as depicted in Figures 4.8 and 4.9, representing the
dependencies of the Go package strings. In the chord diagrams we use,
each package is depicted as a portion of a circle and is given a specific color.
The links of this color represent the package’s dependencies. For instance,
in Figure 4.9, the package the package io is a dependency of the package
strings, and sync and errors are dependencies of the package io. These
graphs are interactive HTML graphs, hovering the mouse over a specific link
or package will hide unrelated links to highlight the selected content. Figure
4.9 is the focused version of Figure 4.8, with focus on the io package. This
allows to have a good data visualization of the dependencies even though it is
less hierarchical than Figures 4.6 and 4.7. For simple packages with a small
number of dependencies, such as the Go package strings, a hierarchical
diagram such as Figure 4.6 gives a better overview compared with the chord
diagram represented in Figure 4.8.

However, for packages with many dependencies, the chord diagram is a
better data representation. PDF readers are not able to load the dependency
graph of the Go package github.com/hyperledger/fabric/bccsp/sw, so
no visualization is possible. Figure 5.7 and 5.8 show the chord dependency
diagram of the Go package github.com/hyperledger/fabric/bccsp/sw.

46 CHAPTER 4. CRYPTOGRAPHIC INVENTORY

Figure 4.8: Chord diagram of the Go strings package

It is true that Figure 5.7 is not very insightful, as there are too many links
between the libraries, however, as the library is interactive, it is possible
to see each package’s direct dependencies. In the focused version of the
diagram, Figure 5.8, we can see all the dependencies from the Go package
github.com/hyperledger/fabric/bccsp/sw.

There is a good Javascript library proposing a lot of diagram templates,
https://d3js.org. We found that the chord diagram was the most insight-
ful for dependency representations, so we did not plot dependencies using
other types of diagrams.

4.6 Cryptographic Inventory in CI/CD

A cryptographic inventory tool would be very useful in CI/CD pipelines, in
order to ensure compliance with a cryptographic policy, check the presence
of any weak cryptographic algorithm potentially in use, verify if any secret is
hard coded and pushed to a remote platform. All these checks would occur
before the deployment of the software, thus mitigating the introduction of
undesirable cryptography. As the cryptographic inventory provides a list of
all the dependencies that can be used by a program, a company could define
a white list of authorized libraries, that are compliant with the security
standards of the company. They would also be able to define a black list

https://d3js.org

4.6. CRYPTOGRAPHIC INVENTORY IN CI/CD 47

Figure 4.9: Chord diagram of the Go strings package, focusing on the io

package, showing its dependencies and the package depending on it.

of cryptographic algorithms that must never be used, for instance because
they are deprecated. Once that an agile cryptographic framework is in use,
the inventory tool will be able to detect any non-agile use of cryptography,
and flag it to keep only agile cryptography in the code base.

Chapter 5

Implementation

As building a full cryptographic agile framework is out of the scope of this
project, I decided to implement a cryptographic inventory tool, as it will
be required for the migration to post-quantum cryptography and for the
migration to a cryptographic agile framework as explained in Chapter 3. I
chose to implement an inventory tool for the Go programming language,
with the possibility to focus cryptographic libraries. I picked Go, as this
language has a well designed package manager, convenient to resolve and
analyze dependencies. Moreover, it is one of the programming languages
I know best. The tool is using static source code analysis to lists all of
the dependencies in an exhaustive way. Hence, it might find cryptographic
libraries that will never be called in practice, but if a library is never called,
then it is not supposed to be part of the source code. A run-time analysis
tool would be more accurate on the libraries that are actually in use, but
may miss libraries used only in a specific context. Furthermore, except for
backward compatibility issues, there is no reason to keep functions that are
never called in a source code.

5.1 Goals

The goal of this inventory tool, is to provide a Software Bill of Material
(SBoM), listing all the dependencies of a project recursively. It should then
provide the dependency tree in a human readable way, so that it can be
used by developers in practice. This tool should help developers to visual-
ize all the packages on which their code is relying. This could prevent an
unconscious use of a weak cryptographic algorithm in one of the dependen-
cies. One of the goals is to provide a precise inventory of all cryptographic
functions which could be called by the program. It can also be used for risk
evaluation. When taking as input a list of known cryptographic libraries
with a security grade, the inventory can highlight the use of cryptographic
algorithms, along with the security level they offer to the project.

48

5.2. DESIGN 49

IBM is interested in making an inventory tool, as having a cryptographic
inventory is the first step to cryptographic agility. This tool is interesting
as a proof of concept, or internal Go code dependency analysis. It could
be used to develop a better cryptographic inventory tool supporting more
programming languages, or to include an inventory capability in an agile
cryptographic framework. IBM currently has customers willing to build
their own cryptographic inventory, mostly for risk assessment and regulation
compliance. However, some other customers already anticipate the post-
quantum cryptography migration and would like to take the necessary steps
to be ready for the big migration.

The goal of the project is not to build a production ready tool with a
nice interface, as I don’t have enough knowledge in front end programming
to make a nice interface. I prefer to focus on the functional side. As an
ideal cryptographic would include a full interactive graphical dashboard, this
project contains the back end mechanisms required to build such tool. This
project only contains a minimal interface, including all described features,
but is not very convenient to use. Moreover, the tool cannot be included in
a CI/CD pipeline, as it requires extra work to adapt it for this usage. Thus
the goal of the tool is not to be production ready, but to serve as a proof of
concept, base or inspiration for future full inventories tools.

5.2 Design

The Go inventory tool was built making use of the Go package management
mechanisms. Go packages easily can be imported as dependencies to other
Go project. Packages are uniquely identified by their path. There are three
types of package imports: standard packages, remote packages and local
packages. Standard packages are the included when Go is set up on a host,
they are stored on disk and resolved automatically by the package manager.
A standard package path is the package’s name, sometimes it is a path as it
is a subpackage i.e strings, net/http etc. Remote packages are Go source
code, published online on platforms such as Github or Gitlab repositories.
The path of a remote package is the url where the package is accessible, with-
out the https://, for instance github.com/guillaumemichel/passtor.
These package resolution requires the Go package manager to query the
remote repository to fetch the package source code. Local packages can be
imported to projects, if they are stored at the correct location on disk, in the
$GOPATH. The path of a local package can be anything, but if the package is
aimed to be published, it is good to pick a valid path for remote packages.
This allows developers to use proprietary libraries, that are not publicly
available.

As remote repositories can automatically be fetched by the package man-
ager, it is easy to get the source code of remote dependencies to analyze

50 CHAPTER 5. IMPLEMENTATION

them. This would not be possible for other languages such as C/C++
as it is harder to retrieve remote dependencies, and some of them are
already compiled so a static source code analysis would not be possible.
Based on these capabilities, static code analysis tools have been devel-
oped for Go and provide interesting features. For example the package
golang.org/x/tools/go/loader allows to load a package’s basic informa-
tion, such as its functions, imports, variables etc., and gives access the source
code.

Using the golang.org/x/tools/go/callgraph package we are able to
retrieve the call graph for target function or package. A call graph is the
graph of the dependencies of a function, and their own dependencies recur-
sively, as depicted in Figure 5.1. This figure contains the call graph from the
function Sum256 from the crypto/sha256 Go package. An arrow represent
a function call from the source of the arrow to its destination, and thus a
dependency. For instance, Sum256 from package crypto/sha256 makes func-
tion calls to Reset, Write and checkSum from the package crypto/sha256.
It indirectly depends on the block function from package crypto/sha256,
as it is a dependency of the Write function, as well as on PutUint64 and
PutUint32 functions from the encoding/binary package. Thus the func-
tion Sum256 from package crypto/sha256 depends on 6 functions from two
packages, its own package and encoding/binary.

Figure 5.1: Call graph of the Sum256 function from the Go package
crypto/sha256

The call graph only includes the dependencies of the target function or
package, and not the complete dependency set of the target’s indirect de-
pendencies. We will illustrate this by an example. We define the root of the
call tree, as the main() function from packageA. packageA only contains

5.2. DESIGN 51

a single function: main(). packageB contains two functions: function1()
and function2(). packageC and packageD contain a single function, re-
spectively function3() and function4(). main() from packageA, depends
on function1() from packageB. function1() depends on function3() and
function2() depends on function4(). Thus, the dependency graph of packageA
only contains packageB and packageC but not on packageD even though it
is a dependency of packageB, itself a dependency the root package. How-
ever, if the root of the dependency tree was packageB, both packageC and
packageD would be included in the dependency graph.

packageA

main()

packageB

function1() function2()

packageC

function3()

packageD

function4()

Figure 5.2: Dependency graph example

Taking the information from the obtained call graph, we build our own
data structures for the function and package graphs. Elements in the package
dependency graph are defined as shown in Listing 5.1. Each package is
uniquely defined by its Path, and has a Name, which is the last part of the
Path. Each package has links to all of its functions, here defined of a map,
mapping the function name to the Function structure, described in Listing
5.2. The DependingOn variable is the set of all the direct dependencies
of the described element. These dependencies are the imported packages.
The DependenceOf variable is the set of all packages that directly import
the described element. This means that if packageA depends on packageB,
packageA will be included in packageB’s DependenceOf, and packageB will
be included in packageA’s DependingOn. The overall structure is a double
linked acyclic graph, which is similar to a directed acyclic graph (DAG)
except that the pointers are two-ways. This feature allows to build the
dependency tree of a specific package, but also allows to build the reverse
dependency tree of all packages depending on a chosen dependency. This

52 CHAPTER 5. IMPLEMENTATION

can be used in particular to verify the dependency chain on deprecated
cryptographic functions, in order to understand where and how they may
be used.

1 // Package structure , element of the dependency tree. A

2 // package has pointers to all of its function that are

3 // used in the calltree , and to the packages it depends

4 // on, and is a dependence of. A package is uniquely

5 // identified by its path

6 type Package struct {

7 Name string

8 Path string

9 Functions map[string]* Function

10 DependingOn map[string]* Package

11 DependenceOf map[string]* Package

12 }

Listing 5.1: Function element structure

An element in the function graph is defined as shown in Listing 5.2. All
functions are uniquely identified by the combination of its name, and by the
package it belongs to. Each element contains a set DependingOn of all the
functions it directly depends on, and a set DependenceOf of all functions
directly depending on itself. These sets are similar to the equivalent on
the package structure. The Function elements also have an ID() method,
returning the unique function identifier defined with the concatenation of
the unique package path, a ”:” and the function name. For instance, the
unique identifier for function1() from packageA is packageA:function1.

1 // Function structure , element of the callgraph tree.

2 // A function has pointers to the package it belongs

3 // to, to the packages it depend on, and to the

4 // packages of which it is a dependence. A function

5 // is uniquely identified by its id() function , which

6 // is a string composition of its Name , and of the

7 // path of the package it belongs to.

8 type Function struct {

9 Name string

10 Package *Package

11 DependingOn map[string]* Function

12 DependenceOf map[string]* Function

13 }

14

15 // ID return a function ’s unique identifier , package path +

16 // function name

17 func (f *Function) ID() string {

18 return f.Package.Path + ":" + f.Name

19 }

Listing 5.2: Function element structure

The most convenient form of an inventory tool would be a dashboard
graphical interface, as described in Section 4.5.1. However, as I unfortu-

5.2. DESIGN 53

nately don’t have experience with web programming and graphical inter-
faces, I decided to opt for a Terminal User Interface (TUI). I could have
learn how to build a dashboard, but I found more interesting to invest my
time on agile cryptography rather than on web programming, which is not
directly related to the topic of this project and to my major. The inter-
activity of the interface was necessary to be able to navigate through the
dependency tree, and this is why I chose to build a TUI rather than a pro-
gram that would only output static graphs. I decided to use the Go TUI
interface from the package Go github.com/rivo/tview, as it provides all
the basic features needed for this tool.

The TUI displays the dependency tree visualizations for packages and
functions dependency trees, as displayed in the right column of Figures 5.4
and 5.5. The dependency tree of the selected element, package or function
is always displayed in the right column of the interface. This structure is
a dependency tree, which means that it may print duplicates of the same
element, if it is a dependency for multiple elements. Due to this redundancy,
the graph contains a lot of elements as some full branches of the dependency
tree are duplicated. This dependency tree has a configurable depth, that
eases its navigation. The dependency tree needed to be interactive, hence
selecting an element in the dependency tree, displays this element’s depen-
dency tree instead, and the full dependency tree can easily be navigated
this way. We also added a reverse dependency tree feature, which reverse
the direction of the dependency tree. This means that the tree displays the
elements depending on the selected element, instead of showing the selected
element’s dependencies. Thus, if we take the package dependency tree of
the target package, in the reverse dependency tree, all the leaves will be
duplicates of the target package, as it is the root of the normal dependency
tree. The reverse dependency tree of the target package will be empty, as
nothing depends on it. This feature is useful to understand the dependency
chain of a specific library. For instance, if a weak algorithm implementation
is present in the packages list, displaying its reverse dependency tree help
to visualize why it is indirectly a dependency of the a project, and which
package is importing it directly.

As the TUI is not able to display complex graphs, we added an export
feature to export the dependency graphs in a visual form. Once a depen-
dency tree is built it is possible to export its graph built using GraphViz1

as an image. This results in a graph similar to Figure 5.1. There is a possi-
bility to export both package dependency graphs and function dependency
graphs, but the function dependency graph is far more complex compared
with the package dependency graph. The inventory tool also has a feature
to export the package chord dependency diagram. This diagram type is
illustrated in Figures 5.7 and 5.8. As the library to produce these graphs

1https://graphviz.org

https://graphviz.org

54 CHAPTER 5. IMPLEMENTATION

is a Javascript library, the graphs are made available from a browser at the
address http://localhost:8080. The inventory tool also offers the possi-
bility to export the dependency graph in JSON format, this is useful in the
case the dependency graph has to be given as input in another software.

Dependency graphs can be filtered in a custom way. When the fil-
ter mode is enabled, the dependency graph is only partially displayed.
Packages to be filtered can be selected, and these packages will be the
only leaves of the dependency tree. This graph will contain all the paths
from the root of the graph, the target package, to the filtered packages.
For example, Figure 5.14 displays the dependency graph of the package
github.com/hyperledger/fabric/bccsp/sw with the package crypto/md5
as only filter. It only displays the different paths from the target package
until the filtered package, and not the rest of the dependency graph. In the
implementation, it is possible to add lists of filters, that can be combined in
order to filter many packages, or only a specific subgroup in an agile way.
For instance, if all standard cryptographic packages are defined as filters,
the dependency graph will only contain packages that depends on standard
cryptographic packages, directly or indirectly. Thus, the output graph will
display all occurrences of cryptographic function calls in the target package
and its dependencies, thus making its cryptographic inventory. For conve-
nience, it is possible to import a list of filters from a simple JSON file, to
avoid entering all filters manually for each dependency scan. There is also
a functionality to export filter lists to JSON files, for convenience in future
uses. Once that the filters are applied on the dependency graph, it can be
exported in JSON, Graphviz and Chord formats, as described above.

5.3 Challenges

Multiple implementation challenges were encounters during this project.
Building the call graph of a Go package has been quite a headache in the
beginning. I did not know about the existence of the package recovering the
call tree of any package golang.org/x/tools/go/callgraph, as this pack-
age is not widely used. I started to implement my own static code analyzer
for Go, scanning the source code and resolving all imports and function
calls. However, it was very challenging to retrieve the right dependencies
that were used, only by analyzing the text of the source code of packages.
Thus, I was truly relieved when I discovered the appropriate package solving
the problem I was trying to address.

Dependency tree visualization has also been a difficult challenge to ad-
dress. I discovered the Javascript d3 library with the capability to build
custom interactive diagram, and I immediately wanted to make use of it
to represent the dependency trees. However, I have no experience with
Javascript, it was thus very challenging for me to understand how to plot

http://localhost:8080

5.4. LIMITATIONS 55

any data. Learning the basics of Javascript could have helped me to use
this specific library, but it would have taken me a lot of precious time, and
learning a new programming language was not in the scope of my project. I
found an interesting use of this library on Github. The example was written
in Go, and displayed Chord diagrams using Javascript code and a simple
http server. I spent some time to study the structure of the Javascript code,
and what I should adapt for my specific application, and was able to adapt
the code for my project. I was able to integrate this sub project in the main
implementation, and this is why the chord graph has to be accessed from a
browser.

As stated before, I have no experience in general web programming
(HTML, CSS, Javascript), and the initial interface of the inventory tool
was supposed to be a graphical dashboard interface. I followed tutorials to
learn how to build a dashboard using web technologies. But it turns out
to be more complicated than I initially thought. I tried to make use of the
Elastic Search and Kibana stack, but I quickly figured out that the features
were not the ones I needed. I really needed to have an interactive interface,
and not simply resolving dependency graphs and saving them as images, as
real time navigation in the dependency tree gives more insights about the
data than a static image. Thus, I decided to make an interactive interface
in the command line environment. I had already built a TUI for a project in
the past, thus I was able to use the same library, with which I was already
familiar, to quickly build an interactive interface. The main interface is a
TUI, but images of dependency graphs can be exported, and an interactive
Chord graph is available from the browser. Of course, it is not as convenient
and aesthetics as a dashboard, but it was a good trade-off between the time
spent on the interface development, and the final result.

5.4 Limitations

PDF and image readers are quite fragile, and most of them cannot open com-
plex files. In our case, large graphviz exported dependency graphs cannot
be opened by PDF and image readers as they contain too many elements.
Thus the use of these graphs is limited to relatively small graphs contain-
ing at most around 100 elements. Even if it was possible to export and
open larger graphs, their use would be limited, as the graph would be too
complex to be understood. Working with sub parts of the graph using the
reverse dependency tree and filter features should offer a best experience
than navigating a giant and complex graph.

The TUI offers only a limited experience compared with a full dashboard
graphical interface. The visual output is quite limited to the command line,
and all interaction has to go through keyboard shortcut, which is not very
convenient. As discussed above, a dashboard interface would allow to have

56 CHAPTER 5. IMPLEMENTATION

more interactions with the data, build filters by clicking directly on packages,
and navigate the dependency graph interactively by clicking on the nodes
to explore or scrolling the 2D graph representation.

5.5 Installation and running guide

The source code of the project is available at https://github.ibm.com/

Cryptographic-Agility/go-sbom, and is restricted to IBM employees, as
the source code is confidential. The repository has to be cloned, or down-
loaded as an archive. The software can be run using the following command
at the root of the project’s repository:

> go run .

This will launch the program and give the interface as described in Figure
5.3. This screen asks the user to enter the unique identifier of the package
to load. The package can be a standard Go package, or a package remotely
accessible on a public repository. The checkbox below indicates whether the
dependencies of standard dependencies should also be resolved. Standard
dependencies are part of the Go language, and thus can be trusted, further-
more, it takes less time to load packages if the dependencies of standard
packages are not resolved. Once these boxes are filled, pressing the Load

button will load the selected package and its dependencies. This operation
might take several minutes for packages with many dependencies.

Figure 5.3: Start screen

Before being able to scan a repository, it must first be fetched using the
following command:

> go get -u [package path]

For private projects, the source code has to be stored in the appropriate
location in the $GOPATH/src directory. To fetch it from a private repository,

https://github.ibm.com/Cryptographic-Agility/go-sbom
https://github.ibm.com/Cryptographic-Agility/go-sbom

5.5. INSTALLATION AND RUNNING GUIDE 57

such as github.ibm.com, it is necessary to generate an access token, and
use the following commands:

> git config --global url."https://<username>:<token>@ \\

github.ibm.com".insteadOf "https://github.ibm.com"

> go env -w GOPRIVATE=github.ibm.com

> go get -u github.ibm.com/<username>/<project>

Once all dependencies are loaded, the display looks like Figure 5.4. The
left column contains all package dependencies of the target package, in al-
phabetical order. The list can be scrolled using arrows to select any package.
The middle columns contains the functions from the selected package from
the right column that are part of the dependency tree of the target package,
in alphabetical order. The right column contains the package dependency
tree of the selected package, in Figure 5.4 it is the dependency tree of the
target package. In this dependency tree, some libraries can appear multi-
ple times, such as the errors package and its dependencies on Figure 5.4.
The reason is that errors is a dependency for the packages bytes, and io.
Compared with a graph without duplicates, the dependency tree is more
hierarchical and readable, but redundant. A maximal depth can be set to
the dependency tree, to keep a reasonable size. It is possible to navigate
through the dependency tree, and selecting an element with ENTER, will dis-
play the sub-dependency tree, with the selected package as root. Therefore,
this tree is quite easy to navigate, to explore the graph, part by part. Note
that cyclic package dependency is not possible by design in Go.

Selecting a function from the middle column will display the dependency
tree of this function in the right column, instead of the package dependency
tree, as displayed in Figure 5.5. As the functions can rely on functions
from other packages, the functions are identified with their ID, as defined in
Section 5.2, with their package path, followed by their local function name.
This dependency tree has the same features as the package dependency tree,
except that it displays functions dependencies. Thus, this dependency tree is
deeper than the package dependency tree. When selecting a specific function
from the function dependency tree, the associated package and functions will
be selected in the left and middle columns respectively, and this function will
become the new root of the function dependency tree in the right column.
Note that cyclic function dependencies are not displayed after the first cycle,
as in the example shown in Listing 5.3.

1 a −→ b −→ c −→ a −→ ...
2

3 a

4 ` b

5 ` c

6 ` a

Listing 5.3: Cyclic function dependencies tree

58 CHAPTER 5. IMPLEMENTATION

F
igu

re
5
.4:

M
ain

m
en

u
d

isp
lay

in
g

p
ackage

d
ep

en
d

en
cy

tree

5.5. INSTALLATION AND RUNNING GUIDE 59

F
ig

u
re

5.
5:

M
ai

n
m

en
u

d
is

p
la

y
in

g
fu

n
ct

io
n

d
ep

en
d

en
cy

tr
ee

60 CHAPTER 5. IMPLEMENTATION

A new target package can be loaded with its dependencies by pressing
n, which will give a form similar to Figure 5.3. Note that dependencies
that have already been resolve don’t need to be loaded again, the pack-
ages are stored in a cache.Thus, loading a new target package with similar
dependencies as the current target package will take less time.

Pressing r will reverse the dependency tree, as shown in Figure 5.6.
The reverse package dependency tree will display the packages that depends
on the selected one, instead of showing the packages on which the selected
package depends on. For instance, the dependency tree of the target package
will contain all the packages from the package list in the left column, whereas
its reverse dependency tree will be empty, as no package, in its dependency
tree, depends on the target package. The leaves of the reverse dependency
tree will all be duplicates of the target package. This feature is equivalent
for the function dependency tree. The reverse dependency tree is useful
to understand how a specific package or function is indirectly used by a
software.

Figure 5.6 shows the example of the reverse function dependency tree of
the function New from the crypto/md5 package. It shows that the pack-
age crypto/md5 is directly used only by the packages crypto/tls and
crypto/x509. It is possible to look more precisely which functions make
use of the package crypto/md5. In this specific case, we see that the
md5 algorithm is used by functions from the crypto/x509 package, that
is used by multiple functions in from the bccsp project. The source code of
DecryptPEMBlock and EncryptPEMBlock from the crypto/x509 package is
printed in Listing 5.4. The comments state that both functions are depre-
cated, as Legacy PEM encryption is insecure by design. Thus this function
should not have been used, and the scanner allowed us to detect the use of
a deprecated function by checking the use of md5 through the dependencies.

1 // EncryptPEMBlock returns a PEM block of the specified type

2 // holding the given DER encoded data encrypted with the

3 // specified algorithm and password according to RFC 1423.

4 //

5 // Deprecated: Legacy PEM encryption as specified in RFC 1423

6 // is insecure by design. Since it does not authenticate the

7 // ciphertext , it is vulnerable to padding oracle attacks that

8 // can let an attacker recover the plaintext.

9 func EncryptPEMBlock(rand io.Reader , blockType string , data ,

password []byte , alg PEMCipher) (*pem.Block , error) {

10 ...

11 }

12

13 // DecryptPEMBlock takes a PEM block encrypted according to RFC

14 // 1423 and the password used to encrypt it and returns a slice

15 // of decrypted DER encoded bytes. It inspects the DEK -Info

16 // header to determine the algorithm used for decryption. If no

17 // DEK -Info header is present , an error is returned. If an

18 // incorrect password is detected an IncorrectPasswordError is

5.5. INSTALLATION AND RUNNING GUIDE 61

F
ig

u
re

5
.6

:
M

ai
n

m
en

u
d

is
p

la
y
in

g
th

e
re

ve
rs

e
p

ac
ka

ge
d

ep
en

d
en

cy
tr

ee
fo

r
th

e
p

ac
ka

ge
c
r
y
p
t
o
/
m
d
5

62 CHAPTER 5. IMPLEMENTATION

19 // returned. Because of deficiencies in the format , it’s not

20 // always possible to detect an incorrect password. In these

21 // cases no error will be returned but the decrypted DER bytes

22 // will be random noise.

23 //

24 // Deprecated: Legacy PEM encryption as specified in RFC 1423

25 // is insecure by design. Since it does not authenticate the

26 // ciphertext , it is vulnerable to padding oracle attacks that

27 // can let an attacker recover the plaintext.

28 func DecryptPEMBlock(b *pem.Block , password []byte) ([]byte ,

error) {

29 ...

30 }

Listing 5.4: Source code of crypto/x509/pem decrypt.go

By pressing the e key from the main window, it is possible to export the
dependency tree in different formats, as shown at the bottom of Figure 5.6.
It is possible to export the dependency tree in the form of a package depen-
dency tree or in the form of a function dependency tree in JSON format.
The format of the JSON structure is very simple, it is an array of objects,
with a "package" or "function" string field, which identify respectively
the package or the function, and an "imports" array field containing all the
dependencies as string identifiers of the associated package or function.

It is also possible to export the dependency trees in a graphical way, using
GraphViz. This utility builds graphs as shown in 5.1. It is thus possible to
export package and function dependency tree in this format, and save the
images as png or svg. However, most function dependency graphs exported
using Graphviz are too large to be read by PDF readers. In our example,
even the package dependency graph is too complex to be opened by a PDF
reader, and even if this graph could have been rendered, it would have been
to complicated to interpret because of its size.

In order to have an overview of complex package dependency graphs, we
added the possibility to generate the associated chord graph as shown in
Figure 5.7 and 5.8. These graphs are built in Javascript and running on a
Go http server, the graph is available from a browser at http://localhost:
8080. These graphs are interactive, and by selecting a package, it will filter
all the dependencies of this package in a specific color, and all the packages
that depend on the selected one in different colors as demonstrated in 5.8.
Thus this representation is helpful to visualize dependencies in very large
graphs that could not be read by PDF readers, even though the output is
not very human friendly when no package is selected, as pictured in Figure
5.7.

The inventory tool support package filtering. By pressing the key f from
the main menu, it will open the filters interface, shown in Figure 5.9. It
is possible to have multiple filter lists, each filter list is numbered and can
be enabled by pressing the number associated with the list. It is possible

http://localhost:8080
http://localhost:8080

5.5. INSTALLATION AND RUNNING GUIDE 63

Figure 5.7: Chord diagram of github.com/hyperledger/fabric/bccsp/sw

64 CHAPTER 5. IMPLEMENTATION

Figure 5.8: Chord diagram with dependencies highlighted for package
github.com/hyperledger/fabric/bccsp/sw

5.6. FUTURE WORK 65

to manually add package filters, and choose to which list it belongs. There
is also a feature to import filter lists from JSON files, and to export them
to JSON files after they are created of modified. This allows to load large
list of filters, and reusing them for different scans. The filter lists are useful
to filter only a selection of packages, and if multiple lists are selected the
new filter list is the union of all the selected lists. Pressing d deletes the
selected filter, and pressing r deletes all filters. In Figure 5.9, we loaded two
filter lists containing all Go standard cryptographic packages, and selected
these lists. It is possible to make use of this filter feature to characterize
cryptographic algorithms into categories, for instance Broken, Non quantum
safe and Post-quantum algorithms.

When coming back to the main menu, after applying the packages filters,
the result is as shown in Figure 5.10. The only parts left of the dependency
tree are the paths from the root to the packages selected in the filter lists,
here the standard cryptographic packages. We can see that the number of
packages on the left column went from 124 in Figure 5.4 down to only 38 in
Figure 5.10. The only packages left are the ones making direct or indirect
use of the selected packages from the filter lists. It is now easier to navigate
through the cryptographic dependencies and to export a cryptographic in-
ventory, because we got rid of all other dependencies. When displaying the
chord diagram of the filtered packages we get the result display in Figures
5.11 and 5.12. The output is much clearer and easier to interpret compared
with Figures 5.7 and 5.8. Figure 5.8, displays the direct cryptographic de-
pendencies of the package net/http.

Figure 5.13 represents a cropped version of the Graphviz package depen-
dency graph diagram. After applying the filters, the graph could be open
by a PDF reader, but is too large to be included on a A4 paper sheet, thus
the graph was cropped to display a preview. Even though the number of
packaged is now reduced, the graph representation stays quite complex, and
filtering less packages may be useful in order to get a smaller and more read-
able graph. Figure 5.14 displays the result of filtering only a single package,
crypto/md5, and the result is easily readable.

5.6 Future work

This inventory tool currently has limited capabilities, and therefore, adding
more features could make it more useful in production. An interesting fea-
ture would be to export the inventory in the SPDX format, as discussed
in Section 4.5.2. As discussed the SPDX format is quite complex, and its
main purpose is to list licenses. However, dependencies can be included
and having an output that is a recognized standard is always convenient
for compatibility between software. Another useful feature to add would be
the support for cryptographic policies. If the inventory can take as input a

66 CHAPTER 5. IMPLEMENTATION

F
igu

re
5.9:

P
ackage

fi
lters

m
en

u

5.6. FUTURE WORK 67

F
ig

u
re

5
.1

0:
M

a
in

m
en

u
d

is
p

la
y
in

g
th

e
fi

lt
er

ed
p

ac
ka

ge
d

ep
en

d
en

cy
tr

ee

68 CHAPTER 5. IMPLEMENTATION

Figure 5.11: Filtered chord diagram of the Go package
github.com/hyperledger/fabric/bccsp/sw

Figure 5.12: Filtered chord diagram with dependencies highlighted for pack-
age net/http

5.6. FUTURE WORK 69

F
ig

u
re

5.
13

:
C

ro
p

p
ed

p
ac

ka
ge

d
ep

en
d

en
cy

tr
ee

d
ra

w
n

u
si

n
g

G
ra

p
h

V
iz

70 CHAPTER 5. IMPLEMENTATION

Figure 5.14: Graphviz representation of the package
github.com/hyperledger/fabric/bccsp/sw filtering only crypto/md5

usage

cryptographic policy and verify if some source code complies with the policy,
this could be useful to assert that a software is compliant with the company
policy before being deployed, or that a software complies with local data
regulation. Furthermore, this inventory tool can be used for other purposes
than a specific cryptographic inventory.

This tool would require a better graphical interface, such as a dashboard
and CI/CD integration to be used in production. Having a full dashboard
as described in Section 4.5.1 would make the tool easier to work with. The
back-end can be kept as it is, and a graphical interface has to be created.
Moreover, developing integration of this tool in CI/CD pipelines would allow
to automate the inventory making process, and to assert software compliance
with a specific policy before it is deployed automatically.

This inventory tool could support other programming languages than
Go. To add a support for another programming language, we only need a
way to build call graphs in this specific language, and provide the call graph
to the inventory tool that will be able to import them, and display them as
described. Moreover, it would be interesting to add a support for projects
using multiple programming languages, displaying the bridge between the
libraries in different programming languages. Run-time analysis can be used
for such a purpose. Adding support for run-time analysis could give more

5.6. FUTURE WORK 71

preciseness on which dependencies are actually in use, as discussed in Section
4.3. Having an hybrid inventory tool making use of both static source code
analysis and run-time analysis would be more accurate than using a single
technique. Run-time analysis support can be added using the output of the
unix perf command.

Chapter 6

Future work

This report defines the steps to reach cryptographic agility. It also presents
a novel inventory tool, with the ability to build cryptographic inventories,
which is the first essential step on the road to cryptographic agility. However,
this is only the beginning of this huge migration, which will require a lot of
efforts in the years to come.

As stated in Chapter 5, the inventory tool that was built for this project
is more a proof-of-concept than a production ready software. Thus, the
first future work would be to improve this tool or build a new one, with
for instance a graphical dashboard interface, making it user friendly, and
addressing all concerns mentioned in Section 5.6. Moreover, it would be
beneficial to have an open source inventory tool implementation with mul-
tiple entities contributing to the improvement of the project. Having a
diversity of inventory tools is always positive and would allow companies to
select the inventory which fits the best their needs.

Then, the major task is to build an agile cryptographic framework, as
described in Chapter 3. This task will be very challenging, as there are
many constraints that must be satisfied, and questions left open. Develop-
ing such a framework will require a team of experienced professionals, and
this task should be carried out either by private firms, selling their frame-
work for profit, or by collaborations between entities building an open source
framework publicly available. One major challenge to address in this agile
cryptographic framework is key management. If the framework is able to
offer a simple key management service, it will revolutionize the way cryp-
tography is consumed, as everything could be automated. The developers
will not have to be responsible for the choice of cryptographic algorithms,
and the handling of cryptographic primitives, such as keys and nonces.

Once the cryptographic inventory and the agile cryptographic framework
are ready to be deployed, there will be a huge work to migrate all applica-
tions from the legacy use of cryptography, to the agile framework, and the
inventory will help in this transition. Awareness should be raised to encour-

72

73

age companies to migrate their software to a cryptographic agile framework,
which will ease the migration to post-quantum cryptography. The deadline
for the development of the frameworks and the migration, is the arrival date
of the quantum computers with the capability of breaking the algorithms
currently in use. The sooner the migration will be performed, the better
data will be protected.

Chapter 7

Conclusion

This report details the possible milestones on the road to cryptographic
agility. The need for cryptographic agility is growing with the arrival of
quantum computers. Quantum computers will be able to break most public-
key cryptographic algorithms currently in use, using Shor’s algorithm [17].
The effects will be disastrous as internet secure communications rely on
these algorithms, the security of web browsing, private messaging and on-
line payments will be compromised. They are currently not powerful enough
to perform these operations, but they are expected to reach this stage in a
near future. The National Institute of Standards and Technology (NIST), is
holding a competition to select the successors to the algorithms that will be
broken by quantum computers, the post-quantum cryptographic algorithms
[1]. NIST is expected to pick the best candidates in the years to come. Once
they have published the new post-quantum cryptographic algorithms stan-
dard, all software and systems using cryptography vulnerable to quantum
computers will have to replace them by the new standards. This migration
is expected to be one of the largest code migration in the history of computer
science, as it concerns a huge amount of software to be updated.

If this migration was to happen today, it would probably be chaotic.
Currently, cryptography is consumed in a static way by most developers,
meaning that they directly call the functions exposed by the implementa-
tions of cryptographic algorithms. This implies that a replacement of cryp-
tographic algorithms in the source code requires to first, make an inventory
of all the cryptographic algorithms in use, and second, manually update
the function call to the vulnerable algorithm, to a function call to the new
standard. This would also require to adapt the data structures resulting
from the replaced algorithm, causing significant changes to the program in-
frastructure. Furthermore, the new functions have to be used correctly to
avoid a cryptographic misuse leading to security vulnerabilities. The chaotic
migration from MD5 illustrates the difficulties of a single cryptographic al-
gorithm migration. However the post-quantum migration will have a much

74

75

wider scale, as many algorithms need to be replaced at once.
Cryptographic agility allows developers to update the use of crypto-

graphic algorithms in software implementation without making significant
changes to the software infrastructure. Cryptographic agility would be the
perfect solution for a smooth post-quantum migration. However, no cryp-
tographic agile framework is available at the moment. Furthermore, it can
provide a flexible security level, a support for cryptographic policy and con-
textual, composability and implementation agility. The report discusses a
possible design for a cryptographic agile framework. Agility could be added
through a new layer of indirection, located between the software’s source
code, and the cryptographic algorithm implementation. This middleware
takes as input a cryptographic policy, defining which and how cryptographic
algorithms must be used. When the use of a cryptographic algorithm is
needed, the source code will call the appropriate function exposed by the
middleware, and the middleware will be responsible to select the algorithm
to use, and to make use of it. The middleware can be implemented as a
dynamic library or as a microservice. The dynamic library offers better per-
formance guarantees, but the microservice provides a higher level of agility.
The cryptographic agile framework also has the feature to migrate encrypted
data to another encryption scheme, and to provide a cryptographic inventory
which can be used to certify compliance with data regulation laws.

In order to be able to make use of a cryptographic agile framework to
carry out an automatic migration to post-quantum cryptography, it is first
necessary to manually migrate software to agile cryptography. A manual
migration is a tedious work, as it requires all function calls to static crypto-
graphic algorithm implementation to be redirected to the agile framework.
A cryptographic inventory helps to understand which, where and how cryp-
tography is used, and is convenient to perform a manual migration. Thus,
building a cryptographic inventory tool is the first step towards crypto-
graphic agility. Automated cryptography inventory solutions are able to
build such inventory, using static source code or run-time analysis. These
tools can also be used to certify regulations compliance, assess risk, or list
cryptographic primitives in use, such as certificates or keys.

We implemented a simple static source code analysis tool, aiming to build
a Software Bill of Material for Go implementations. It recursively scans the
dependencies of a Go project, and builds its dependency graph. The de-
pendency graph is displayed in a Terminal User Interface and is navigable
and interactive. The dependency graph can also be exported as an inter-
active chord diagram, a Graphviz dependency graph image or as a JSON
text file. Specific packages can be filtered in order to build a very specific
inventory. Thus, filtering all the cryptographic components provides a full
cryptographic inventory. The filter and the reverse dependency tree features
provide details on how specific cryptographic algorithms are used. It also
shows the components of a specific project making use of these algorithms,

76 CHAPTER 7. CONCLUSION

which is convenient to discover dependency on deprecated algorithms, as
demonstrated.

The road map to agile cryptography development consists in three steps.
The first one is to develop convenient tools producing Software Bill of Ma-
terial for arbitrary projects, as described in Chapter 4. The cryptographic
inventory can be extracted from this Software Bill of Material. The second
step is to build a cryptographic agile framework as described in Chapter 3.
This framework would give the ability to seamlessly migrate the cryptog-
raphy in use at a project or company level. Once the inventory tool and
cryptographic agile framework are out, the last step is to advertise the use
of these tools for post-quantum cryptography migration, in order to avoid a
chaotic manual migration.

The milestones for the migration to post-quantum cryptography for the
industry are the following. The first milestone is to build a company-wide
cryptographic inventory, or individual cryptographic inventories for each
project. Once this is done, engineers must concurrently update the source
code from the legacy use of cryptography to an agile cryptographic frame-
work, and migrate their databases accordingly. After this first migration is
completed, the migration to post-quantum cryptography can be automat-
ically performed from the cryptographic agile framework. This framework
will then be used to automate future migrations, policy compliance, and key
management, thus simplifying the consumption of cryptography.

This project presented the strategy to reach cryptographic agility, and
pointed out how cryptographic agility can offer a fast and organized migra-
tion to post-quantum cryptography.

Bibliography

[1] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,
Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody,
Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone.
“Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process”. In: (July 2020). doi: 10 .

6028/NIST.IR.8309.

[2] Mirko Amico, Zain H. Saleem, and Muir Kumph. “Experimental study
of Shor’s factoring algorithm using the IBM Q Experience”. In: Phys-
ical Review A 100.1 (July 2019). issn: 2469-9934. doi: 10 . 1103 /

physreva . 100 . 012305. url: http : / / dx . doi . org / 10 . 1103 /

PhysRevA.100.012305.

[3] F. Arute, K. Arya, R. Babbush, et al. “Quantum supremacy using a
programmable superconducting processor”. In: Nature 574.7779 (Oct.
2019), pp. 505–510. issn: 1476-4687. doi: 10.1038/s41586- 019-

1666-5.

[4] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh
Vazirani. “Strengths and Weaknesses of Quantum Computing”. In:
SIAM Journal on Computing 26.5 (Oct. 1997), pp. 1510–1523. issn:
1095-7111. doi: 10.1137/s0097539796300933. url: http://dx.doi.
org/10.1137/S0097539796300933.

[5] Lidong Chen, Stephen P. Jordan, Yi-Kai Liu, Dustin Moody, Rene C.
Peralta, Ray A. Perlner, and Daniel C. Smith-Tone. Report on Post-
Quantum Cryptography. NIST, Apr. 2016. doi: 10.6028/NIST.IR.
8105.

[6] Cryptosense. Cryptographic Inventory Whitepaper v1.0. Feb. 2020.

[7] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Pax-
son, Michael Bailey, and J. Alex Halderman. “The Matter of Heart-
bleed”. In: Proceedings of the 2014 Conference on Internet Measure-
ment Conference. IMC ’14. Vancouver, BC, Canada: Association for
Computing Machinery, 2014, pp. 475–488. isbn: 9781450332132. doi:

77

https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.1103/physreva.100.012305
https://doi.org/10.1103/physreva.100.012305
http://dx.doi.org/10.1103/PhysRevA.100.012305
http://dx.doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1137/s0097539796300933
http://dx.doi.org/10.1137/S0097539796300933
http://dx.doi.org/10.1137/S0097539796300933
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.IR.8105

78 BIBLIOGRAPHY

10.1145/2663716.2663755. url: https://doi.org/10.1145/

2663716.2663755.

[8] Adam Everspaugh, Rahul Chaterjee, Samuel Scott, Ari Juels, and
Thomas Ristenpart. “The Pythia PRF Service”. In: 24th USENIX Se-
curity Symposium (USENIX Security 15). Washington, D.C.: USENIX
Association, Aug. 2015, pp. 547–562. isbn: 978-1-939133-11-3. url:
https://www.usenix.org/conference/usenixsecurity15/technical-

sessions/presentation/everspaugh.

[9] Jay Gambetta. IBM’s Roadmap For Scaling Quantum Technology.
Sept. 2020. url: https://www.ibm.com/blogs/research/2020/
09/ibm-quantum-roadmap/.

[10] InfoSec Global. Hunting for weak Crypto Whitepaper. https://www.
infosecglobal.com/resource/agilescan-whitepaper.

[11] GnuPG. The ‘GnuPG Made Easy’ Reference Manual. https://www.gnupg.org/documentation/manuals/gpgme.pdf.
Oct. 2020.

[12] Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. “iCryptoTracer:
Dynamic Analysis on Misuse of Cryptography Functions in iOS Ap-
plications”. In: Network and System Security. Ed. by Man Ho Au,
Barbara Carminati, and C.-C. Jay Kuo. Cham: Springer International
Publishing, 2014, pp. 349–362. isbn: 978-3-319-11698-3.

[13] D. McMahon. Quantum Computing Explained. Wiley - IEEE. Wiley,
2007. isbn: 9780470181362. url: https://books.google.ch/books?
id=bDXwFHJNKFAC.

[14] David Ott, Christopher Peikert, and other workshop participants. Iden-
tifying Research Challenges in Post Quantum Cryptography Migration
and Cryptographic Agility. 2019. arXiv: 1909.07353 [cs.CY].

[15] Ronald Rivest and S Dusse. The MD5 message-digest algorithm. 1992.

[16] Shodan. [2019] Heartbleed Report. https://web.archive.org/web/
20190711082042 / https : / / www . shodan . io / report / 0Wew7Zq7.
Archive from: 2019-07-11. 2019.

[17] P. W. Shor. “Algorithms for quantum computation: discrete loga-
rithms and factoring”. In: Proceedings 35th Annual Symposium on
Foundations of Computer Science. 1994, pp. 124–134. doi: 10.1109/
SFCS.1994.365700.

[18] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and
Yarik Markov. “The First Collision for Full SHA-1”. In: Advances
in Cryptology – CRYPTO 2017. Ed. by Jonathan Katz and Hovav
Shacham. Cham: Springer International Publishing, 2017, pp. 570–
596. isbn: 978-3-319-63688-7.

https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.infosecglobal.com/resource/agilescan-whitepaper
https://www.infosecglobal.com/resource/agilescan-whitepaper
https://books.google.ch/books?id=bDXwFHJNKFAC
https://books.google.ch/books?id=bDXwFHJNKFAC
https://arxiv.org/abs/1909.07353
https://web.archive.org/web/20190711082042/https://www.shodan.io/report/0Wew7Zq7
https://web.archive.org/web/20190711082042/https://www.shodan.io/report/0Wew7Zq7
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

BIBLIOGRAPHY 79

[19] Xiaoyun Wang and Hongbo Yu. “How to Break MD5 and Other Hash
Functions”. In: Advances in Cryptology – EUROCRYPT 2005. Ed. by
Ronald Cramer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 19–35. isbn: 978-3-540-32055-5.

[20] Stephen Wiesner. “Conjugate Coding”. In: SIGACT News 15.1 (Jan.
1983), pp. 78–88. issn: 0163-5700. doi: 10.1145/1008908.1008920.
url: https://doi.org/10.1145/1008908.1008920.

https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920

	Introduction
	Background
	About quantum computers
	Quantum computers
	Implications on today's cryptography

	Migration to post-quantum cryptographic algorithms
	Cryptographic Policy

	Cryptographic Agility
	Definition
	Need for Cryptographic Agility
	Existing agile cryptographic libraries
	Java Cryptographic Architecture (JCA)
	Gnu Privacy Guard Made Easy (gpgme)
	Qt SSL library (QSsl)
	OpenSSL

	Agile Cryptographic Framework Requirements
	Design
	Interface of cryptographic implementations
	Interface of the source code
	Configuration interface
	Data structures
	Migration of encrypted data
	Nature of the agile cryptographic framework

	Proof of concept: Signature microservice
	Design
	Results

	Cryptographic Agility Strategy
	Migration to an agile framework
	Data migration
	Cryptographic Agility in CI/CD

	Cryptographic Inventory
	Definition
	Need for Cryptographic Inventory
	Before Agile Cryptography
	After Agile Cryptography

	Inventory building techniques
	Existing Cryptographic Inventories
	Cryptosense Analyzer
	InfoSec Global AgileScan

	Inventory interface
	Dashboard
	Output format
	Diagrams

	Cryptographic Inventory in CI/CD

	Implementation
	Goals
	Design
	Challenges
	Limitations
	Installation and running guide
	Future work

	Future work
	Conclusion

