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Abstract
This paper addresses privacy challenges inherent in Distributed
Hash Tables (DHTs). While DHTs facilitate efficient content lookup,
privacy concerns arise due to query mechanisms revealing user
interests. In the paper, we focus on Kademlia-based DHTs and pro-
pose to obfuscate the lookup item by presenting three obfuscation
methods: double hashing, Private Set Intersection, and prefix fetch-
ing. Based on our privacy improvements, we present a protocol
specification for the libp2p kad-dht, a popular Kademlia implemen-
tation. The methods are analyzed in the context of measurement
values derived from the public IPFS network, which uses kad-dht.

CCS Concepts
• Networks→ Peer-to-peer protocols; • Security and privacy
→ Privacy-preserving protocols.
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1 Introduction
Distributed Hash Tables (DHT) provide an efficient solution for
organizing Peer-to-Peer (P2P) overlay networks, facilitating con-
tent and peer discovery. Essentially, a DHT works as a distributed
key-value store. In the DHT topology, a key serves as a unique
identifier for both peers and content. The key is linked to the peer’s
address and the content provider’s identifier, respectively. The key
distribution varies by DHT. A prime example is Kademlia [11].

Kademlia is used in many P2P overlay networks, such as the
InterPlanetary File System (IPFS) [4], BitTorrent [5], Swarm [18],
and SAFE [10]. In Kademlia, entries of the DHT are distributed
to the closest peer based on the XOR distance between the value
and the peer identifier. By systematically traversing peers in the
DHT, it becomes possible to locate the content provider for specific
items. This approach enables a peer to identify a content provider
by querying only a fraction of the entire network.
∗These authors contributed equally to the paper.
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While a DHT allows scalable content lookup, the mechanism
reveals information about a user’s interest. The query reveals the
interest of the initiator in the keys. The key, a pseudonymous rep-
resentation of the content, indirectly reveals the content. The value
of the answer reveals the content provider. This allows a DHT peer
to learn the interest of all senders, requesting keys in its area of the
key-space. Although only part of the network has to be queried to
find the content provider, collaborating peers can learn interests of
peers. For privacy, source or content of a query needs protection.

While obfuscating the sender of a query [8, 14, 19] protects the
sender’s identity, a sensitive item of a query might be even more
critical. A malicious entity might select its observation target based
on interest in a specific item. In this scenario, query privacy is
necessary to mitigate target recognition in the first place.

In this paper, we focus on improving the lookup privacy in
Kademlia-based DHTs by obfuscating query content. We utilize
Private Set Intersection (PSI) to hide the item of interest from all
queried peers. Specifically, we show three protection methods: a
lightweight hashing approach, a computation heavier approach
using an Elliptic Curve Diffie-Hellman PSI protocol (ECDH-PSI),
and requesting a range of items. The presented methods can be
combined for different privacy-utility trade-offs. For better under-
standing, we explain our methods, in the context of the libp2p
kad-dht1, which is used among others for routing in the IPFS P2P
overlay network. Focusing on kad-dht allows us to gain insights of
the overhead through sampling the IPFS network.

Our analysis is based on measurements of the public IPFS net-
work’s DHT. We show that our presented methods have different
privacy and performance advantages: All methods obfuscate the
content of a request from DHT nodes at the cost of a certain over-
head. While the methods do not add RTTs, the response size of
queries increases. A mix of hashing and PSI provides the biggest pri-
vacy improvements and the largest overhead. Combining hashing
and prefix fetching makes it easier to crawl the DHT. If crawling
content is deemed acceptable, the mix of hashing and prefix fetch-
ing has the best privacy-utility trade-off. Otherwise, prefix fetching
in combination with PSI provides the best trade-off.

Our main contribution consists of three combinable approaches
to improve lookup privacy in Kademlia. The remainder is structured
as follows: In Section 2, we present related work. We explain the
functionality of Kademlia and our privacy improvements in Sec-
tion 3 and a protocol specification for IPFS in Section 4. Section 5
analyzes the consequences of our methods based on measurements
of the public IPFS network. Section 6 concludes the paper.

1https://github.com/libp2p/specs/blob/master/kad-dht/README.md
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2 Related Work
The goal of a privacy-enhanced DHT lookup is to prevent other
peers from learning the interests of a client. This can be achieved
by obfuscating the item of the request, which can be achieved via
different methods. It is possible to use cryptographic methods or by
requesting multiple elements. NISAN [15] tries to privately select
an onion router for anonymous communication, adding privacy
protection to a Chord [17] DHT. In NISAN, instead of requesting a
specific item, the client selects the next hop from the fingertable of
another peer. Backes et al. [2] use cryptography to hide the query
from intermediate peers in a robust DHT, i.e., a Chord-based DHT
with quorums. The lookup on intermediate peers uses oblivious
transfer to find closer peers. The final element lookup is done
in plain, revealing that the peer is interested in an element or
can use again oblivious transfer. Mazmudar et al. [12] propose to
improve the method from Backes et al. by using Private Information
Retrieval (PIR) for the element lookup. In [13], Mazmudar et al. show
another approach to use PIR for DHT requests in IPFS. A hashing
approach is proposed by Katsantas et al. [9], proposing to hash the
object three times to increase the privacy. Our approaches focus
on query obfuscation as well. We employ similar means; however,
they are combinable and distinctly centered on Kademlia.

The lookup mechanism of DHTs such as Chord and Kademlia
is designed in a way that with each step a peer closer to the ele-
ment can be contacted. Therefore, the nature of the lookup already
reveals information about the item of interest. This can be used
for range estimation attacks [20]. This observation leads us to an-
other approach to increase the privacy: obfuscating the identity of
the requestor. The simplest method to get plausible deniability for
the requestor is to use a recursive lookup. In a recursive lookup
each peer forwards the request, therefore, requesting peers could
make a query on behalf of another peer. However, with a recursive
lookup the requestor loses control of the lookup with the first hop
and only learns the final result. Furthermore, a recursive lookup
prevents item obfuscation, since the following peers need to be able
to determine the failure or completion of the lookup. McLachlan
et al. [14] propose Torsk, a system for secure and private selection
of onion router. They obfuscate the association of lookup target
and initiator by using so-called buddy peers. Via a random walk
a buddy is selected, which performs the lookup on behalf of the
peer. Additionally, each peer performs cover lookups to mitigate
timing attacks. Although, it has been shown that the buddy selec-
tion process is vulnerable to a denial of service attack [20]. Next to
the proxy lookup from Torsk, it is also possible to use anonymous
communication systems like Tor [8] to hide the source of a request.

Wang and Borisov [19] present the Octopus DHT. The Octo-
pus lookup consists of multiple anonymous paths, providing cover
lookups, impeding range estimation.

Our proposed methods are compatible with source obfuscation.

3 Query Obfuscation
A DHT structures the P2P overlay network. In general, a DHT is a
distributed key-value store. Each record consists of a key 𝐾 and a
corresponding value𝑉𝐾 , stored across the network. The distribution
of records depends on the area for which a peer is responsible. Com-
monly, range and position in the network of every peer depends
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Figure 1: Kademlia tree with 𝑛 = 8, showing buckets of 𝑁5.

on its peer identifier (PID). The PID can be self-assigned, but must
be unique from a pre-determined identifier (ID) space. The peer is
responsible for keys closest to its PID. In Kademlia, "closeness" is
based on the symmetric and unidirectional XOR distance.

For routing in the network, every peer maintains a routing table
of up to 𝑛 𝑘-buckets, where 𝑛 is the length of ID space. The 𝑘 is
a redundancy factor and determines the maximum size of the 𝑘-
buckets. Each bucket entry consists of a key-value pair, a peer’s
PID as the key and contact information as the value. The bucket
of a peer is determined by the XOR distance of remote PID and
reference PID. The bucket is chosen based on the shortest prefix
length of the XOR distance, sorting the peers in a binary prefix tree
structure. Fig. 1 shows an example with an 8𝑏 ID space.

The data is identified by a content identifier (CID). The CID has
the same identifier space and length as the PID. This is commonly
achieved by using a cryptographic hash function, which provides
a self-certifying name. A cryptographic hash function allows fast
computation of a fingerprint of its input, which is unfeasible to
reverse. Both PID and CID are usually identified using the digest
of the same hash function, ensuring that both PID and CID iden-
tifiers lie in the same key space. Through a hashing function, the
fingerprint allows to verify the integrity and correctness of the file.

Fig. 2a shows the sequence for lookup (GET) and store opera-
tion (STORE) of a key𝐾 with the value𝑉𝐾 . To find content providers,
a peer sends a lookup request to the peers closest to the CID based
on its routing table. If a queried peer stores any provider record
associated with the queried CID, it returns the value 𝑉𝐾 associ-
ated with the key, the PIDs of the content providers. Otherwise, it
returns the 𝑘 closest peers to the queried CID (CloserPeers(𝐾)).
This repeats until either a content provider is found or no new peers
are discovered. To publish data in the DHT, a content provider looks
up the 𝑘 peers closest to the CID and then sends a STORE with the
key-value pair (𝐾 ,𝑉𝐾 ) of CID and its own PID.

While the lookup process of Kademlia is efficient, it reveals the
interest and identity of requesters to all peers involved in the lookup
process. In the following, we refer to this approach as Vanilla-Kad.
We further use server to indicate a peer, which provides DHT entries
and client to indicate a peer requesting a DHT entry. Fig. 2 shows
changes to the message sequences, due to our approaches.

3.1 Threat Model
The goal of our proposed privacy mechanisms is to protect the
content of a request. For the privacy mechanisms, we assume a
single or partial adversary controlling at most a small fraction of
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Client Server
GET 𝐾

𝑉𝐾

CloserPeers(𝐾)

STORE [𝐾,𝑉𝐾 ]

(a) Vanilla-Kad.

Client Server
GET 𝐹

𝑉𝐹

CloserPeers(𝐹)

STORE [𝐹,𝑉𝐹 ]

(b) Hash-Kad.

Client Server
GET 𝑥

𝑦,𝑊 ′

fraction of all buckets

STORE [𝐾,𝑉𝐾 ]

(c) PSI-Kad.

Client Server
GET 𝐿

KeysClosestToPrefix

PeerClosestToPrefix

STORE [𝐾,𝑉𝐾 ]

(d) Prefix-Kad.

Figure 2: Kademlia message sequences for lookup and store. The dashed messages indicate a choice for one message.

the nodes, evenly split across the DHT ID space. The adversary
possesses information gained through protocol-compliant behavior,
observing or replaying queries that the servers received, and is not
able to observe all communication. This includes that the adversary
may gain information by hiding records and manipulating the list of
returned peers, eventually redirecting the sender to other colluding
peers. Additionally, the adversary may collect information from
other external sources. Finally, the adversary is computationally
bounded and cannot break the underlying cryptographic primitives.

For ease of understanding, we decided to explain our privacy
mechanism in Section 3.3 in the context of a semi-honest adversary.
Please note, however, that it is possible to use another PSI protocol,
e.g., [6], which is able to detect malicious behavior. Moreover, we
mostly focus on privacy aspects and do not consider underlying
Kademlia security issues. In general, our methods provide security
similar to Vanilla-Kad, while remaining compatible to proposed
security improvements [3].

3.2 Double Hashing (Hash-Kad)
To obfuscate the query key 𝐾 , the client requests a fingerprint 𝐹 of
the key, instead of the key. 𝐹 is obtained by using a cryptographic
hashing function 𝐻 :

𝐹 = 𝐻 (𝐾) . (1)
We call this method Hash-Kad. The method can also be considered
as double hashing, since in Vanilla-Kad, CIDs are commonly the hash
of the file. An overview of Hash-Kad’s sent and received messages
can be seen in Fig. 2b.

Hash-Kad uses the CID’s fingerprint as key and encrypted PIDs
as values. Consequently, a lookup request sends GET 𝐹 . The return
values are the content providers’ encrypted PIDs, using the CID as
encryption key, signed by the content provider, denoted as

𝑉𝐹 = 𝑆𝐼𝐺𝑁𝐶𝑃 (𝐸𝑁𝐶𝐾 (𝑉𝐾 )). (2)
Similar to Vanilla-Kad, in case the key is not stored, the server re-
turns the 𝑘 closest peers to the fingerprint. The store operation also
sends only the fingerprint and the signed and encrypted value 𝑉𝐹 .
This method effectively conceals the PID of the content providers
from peers who do not have knowledge of the CID. Using a finger-
print of the CID as identifier still allows a curious server to replay a
request. However, the curious server will be unable to decrypt the
PIDs, as it does not know the CID. Moreover, for fetching content
from a content provider the CID is used, not the fingerprint.

The encryption of the PID with the CID serves as proof, that a
content provider did not publish a random value. This prevents a
malicious server from baiting clients by simply publishing a hash

without knowledge of the CID. The signing of the record prevents
malicious servers from serving an arbitrary forged record corre-
sponding to the requested CID. The client can computationally
verify validity of the record and that the creator knows the CID.

This approach provides some obfuscation through the obstruc-
tion of servers from associating a client’s request with the spe-
cific requested content. As a result, servers cannot deduce which
client is accessing which piece of content. This level of protection
remains robust as long as servers remain unaware of the CID re-
quested by clients. Consequently, the confidentiality of a request
predominantly relies on the undisclosed nature of the requested
CID. Curious servers can learn CIDs from other sources, i.e., website
advertising the content, or crawling the Internet. The CIDs only
need to be hashed to get fingerprints, which can be checked against
stored entries or clients’ requests, revealing interest of clients.

3.3 Private Set Intersection (PSI-Kad)
The query for a particular item can be interpreted as a set intersec-
tion problem. In this case, the client’s interest in particular keys is
one set and the keys of the stored records from the server are the
other set. The client is interested in the intersection of the sets. A
method to reveal this intersection privately without revealing in-
formation about the sets’ elements is Private Set Intersection (PSI).
Hash-Kad’s hashing of the elements and comparing the resulting
hashes can be considered as a naïve but insecure variant of PSI [16].
However, the result of the intersection would only eliminate inter-
mediate servers, as the client only learns possession or absence of
the key and not the associated value. To also obfuscate the last hop,
it is possible to utilize a specific PSI approach, which also allows
data transfer. For our approach, denoted as PSI-Kad, we adapt an
ECDH-PSI [1] protocol to allow data transfer.

An overview of PSI-Kad’s sent and received message can be seen
in Fig. 2c. The goal of the request is to receive the value of the DHT
record with the key 𝑐𝑖 , 𝑉𝑐𝑖 . The key is changed based on a cyclic
group and a Hash function 𝐻 , which maps the ID to the cyclic
group. The client calculates:

𝑥𝑖 = 𝐻 (𝑐𝑖 )𝑟𝐶 , (3)

with 𝑟𝐶 being a random number chosen by the client. The client
sends a GET 𝑥 . Independent of the server’s DHT, the server returns:

𝑦𝑖 = 𝑥
𝑟𝑆
𝑖 = (𝐻 (𝑐𝑖 )𝑟𝐶 )𝑟𝑆 , (4)

with 𝑟𝑆 being a random number chosen by the server. To complete
the set intersection the client needs knowledge about the records
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stored by the server. For PSI without data transfer, the server trans-
forms each key (𝑠 𝑗 ) of the stored records using 𝑟𝑆 with:

𝑤 𝑗 = 𝐻 (𝑠 𝑗 )𝑟𝑆 (5)
and sends the set𝑊 to the client. To allow data transfer, the server
encrypts the value of the record 𝑉𝑠 𝑗 with𝑤 𝑗 :

𝑤 ′𝑗 = 𝐸𝑁𝐶𝑤𝑗 (𝑉𝑠 𝑗 ), (6)

and returns the set of all encrypted 𝑤 ′𝑗 ,𝑊
′. With 𝑦𝑖 and𝑊 ′ the

client can complete the set intersection. The transformation of the
key can be reversed with 𝑟𝐶 :

𝑧𝑖 = ((𝐻 (𝑐𝑖 )𝑟𝐶 )𝑟𝑆 )
1
𝑟𝐶 = 𝐻 (𝑐𝑖 )𝑟𝑆 . (7)

If the resulting 𝑧𝑖 can be used to decrypt a𝑤 ′𝑗 the client learns 𝑉𝑐𝑖 .
If there exist no 𝑤 ′𝑗 that can be decrypted with 𝑧𝑖 , the client

needs to find another peer. The transformed key 𝑥𝑖 , which the client
sends, contains no usable information for the server. Therefore, the
server cannot suggest closer peers based on the requested key.
Furthermore, the server should not know if it is even necessary to
send closer peers, i.e., if the server is only an intermediate peer. For
PSI-Kad, we need to provide clients with possibly closer peers. We
propose two methods to get closer peers: return always parts of the
routing table, return peers based on the client.

The client is guaranteed to receive a closer peer, if we provide
the whole routing table. In Kademlia, keys are stored at the absolute
closest peers according to the XOR distance of PID and key. Keys
are searched by querying the closest peers according to a peer’s
routing table. Therefore, the target of the client should be from the
client’s perspective in the same bucket as the server. The server
could give each bucket a weight based on the distance from itself;
the closer the peers in a bucket, the more peers are included in
the return value. As an example, we assume the routing table of
peer 𝑁5 as shown in Fig. 1. 𝑁5 could return 𝑁4, 𝑁6, 𝑁7, 𝑁1, 𝑁2,
and 𝑁10. Most of the peers are close to the requested peer and only
a few peers far away. Still, peers are selected randomly from all
buckets, providing any client with closer peers.

The other method uses the information provided by a client.
Since the client already chooses the server for a specific reason,
it should be sufficient if the server sends all buckets from its own
bucket up to the bucket in which the client is included. As an
example, consider again the routing table of peer 𝑁5 as shown in
Fig. 1. When 𝑁5 sends a request to 𝑁8, then a closer peer should be
known by 𝑁8–𝑁12. For 𝑁8, 𝑁0–𝑁7 are all in the same bucket. Since
𝑁8 was contacted, it is unlikely that these peers are closer. Similar
to the other method, the server could also provide only parts of
the buckets based on the distance. While this approach has the
potential to produce less overhead, it prevents the usage of proxies
for queries, which could hide the identity of the client.

Both approaches reduce the redundancy of the lookup, returning
only parts of the closest buckets. Reducing the redundancy makes it
easier tomanipulate the lookup path and increases the susceptibility
to churn. The store operation of PSI-Kad is the same as Vanilla-Kad.

Since the approach is based on a semi-honest PSI protocol, it
can only protect against semi-honest servers. Due to the additional
transformation of the key, the server does not learn any information
about the key and is even unable to replay the query. The only
knowledge a server gains from the request is the number of keys

Algorithm 1: ClosestToPrefix
Data: prefix, 𝑘 , all_keys
Result: selected_keys

1 selected_keys← ∅
2 𝑙 ← len(prefix)
3 for counter = 0 to 2𝑙 − 1 do
4 if len(selected_keys) ≥ 𝑘 then
5 break

6 leaf← prefix ⊕ bin(counter, 𝑙 ) // bin(𝑥, 𝑙 ) returns binary representation

of 𝑥 in 𝑙 𝑏
7 matching_keys← FindMatchingKeys(leaf, all_keys) // returns all keys

matching 𝑙𝑒𝑎𝑓
8 if len(matching_keys) ≤ 𝑘 − len(selected_keys) then
9 selected_keys← selected_keys ∪ matching_keys

10 else
11 random_selection←

SelectNRandom(matching_keys, 𝑘 − len(selected_keys) )
12 selected_keys← selected_keys ∪ random_selection

13 return selected_keys

the client is interested in and that its PID is closer to the key than
the client’s PID. A disadvantage of this approach is that the server
needs to send potentially large amounts of data for the client to be
able to complete the PSI. It should be noted that other PSI protocols
are also possible (e.g., [6]). Another PSI protocol can increase the
protection against malicious behavior, however, the PSI protocol
should also enable private transfer of the value.

3.4 Prefix Fetching (Prefix-Kad)
Without any cryptographic measures, PSI-Kad basically requests
all records from the server and checks if it stores the key of in-
terest. Note that requesting the entire list of all records already
conceals the item of interest. The only knowledge the server gains
in this scenario is the interest of the client in something. Since this
approach has a potentially large overhead, we can trade off the
overhead by compromising some degree of privacy. Therefore, we
propose Prefix-Kad, which sends as request a prefix 𝐿, GET 𝐿. An
overview of sent and received messages using Prefix-Kad can be
seen in Fig. 2d. The prefix reveals some information about the key,
however, the number of keys that need to be transferred can be
reduced. The main goal of prefix fetching is to retain plausible deni-
ability by concealing the request in an anonymity set. The answer
of a request are multiple items, the keys closest to the prefix. As
in PSI-Kad, a server should be unable to determine success of a
request, making it necessary to also send closer peers.

The closer peers are determined based on 𝐿. Computing the XOR
distance between binary bitstring of different lengths results in an
undefined behavior. Hence, it becomes non-trivial to discern the
𝑘 closest keys to a prefix within the ID space. Nevertheless, we
can identify keys matching a prefix, and compute a XOR distance
between a prefix and the prefix of the key of same size. To address
this challenge, we introduce Algorithm 1 that efficiently identifies
the 𝑘 closest keys to a given key prefix. If less than 𝑘 peers have a
match with 𝐿, the server also considers peers with a shorter prefix
length 𝑙 , e.g., 𝑙 − 1, 𝑙 − 2, . . . , 𝑙 − 𝑙 , until at least 𝑘 candidate peers
are found, or all known peers are candidates. If the server has more
than 𝑘 candidate peers, the server chooses at random from the
candidates with the shortest common prefix.

Prefix fetching can also be used in combination with Hash-Kad
or PSI-Kad. The combination can mitigate some disadvantages of
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the approach, e.g., enriching prefix fetching with pseudonymity. In
case of Hash-Kad, the client reveals too much information and the
amount of information leaked is reduced. The leaked information is
reduced by requesting the prefix of the hash instead of the complete
hash. For the server to identify the item, it needs the original CIDs
of items to determine a range of interested items.

3.5 Privacy Discussion
In Vanilla-Kad, servers can infer a client’s interest in a CID, even
without providing the record by replaying requests to retrieve con-
tent. Our proposed methods increase the difficulty of linking re-
quests to content but still reveal that a client showed interest in
something. In the following, we discuss privacy aspects, i.e., prefix
length, reader and provider privacy, and potential improvements.

3.5.1 Prefix length. The theoretical anonymity set of an obfuscated
request is ≈ 2𝑛 , with 𝑛 being the length of the ID space. Each
revealed bit halves the theoretical anonymity set. In practice, the
anonymity set ismuch smaller, since not all keys are used. The prefix
length can be chosen, based on the known number of keys in the
network, to achieve a fixed size anonymity set. The goal is that each
prefix request yields an approximate count of 𝑁 records, matching
the prefix, where 𝑁 represents a system parameter. Clients could
select a specific 𝑁 depending on their privacy level needs.

The prefix length 𝑙 in bits can be computationally derived from
𝑁 and the total number of CIDs disseminated across the DHT: 𝑙 ←
𝑙𝑜𝑔2 ( #𝐶𝐼𝐷𝑠𝑁 ). Given the inherent challenges in precisely gauging
the total number of CIDs published in a decentralized network,
an approximation to dynamically and continuously determine 𝑙 is
needed: Peers need to keep track of the average number of records
returned for each request made with the current prefix length. Let
𝑎 symbolize the average match count for a prefix length 𝑙 . At any
givenmoment, if 𝑎 > 2𝑁 , 𝑙 is incremented, and conversely, if 𝑎 < 𝑁

2 ,
𝑙 is decremented. For continuity, the calculated value of 𝑙 should be
persisted beyond a peer’s lifetime.

Due to Kademlia’s lookup procedure of contacting the closest
peers, the anonymity set is further reduced. A server can estimate
the range of the interest based on the XOR distance of its own PID
and the client’s PID. The range can be further reduced with each
contacted peer, although the intermediate peer would need to share
query information. This is similar to the range estimation attack
on the Chord-based NISAN lookup [15] described in [20].

3.5.2 Reader Privacy. Since a request can match multiple CIDs,
prefix fetching generally increases the anonymity set of a query.
The combination of Prefix-Kad and PSI-Kad, however, reveals more
information compared to each separate approach. Prefix-Kad allows
the client to satisfy multiple interests with a single request. In
contrast, PSI-Kad requires the client to send a request for each
item of interest. Compared to Prefix-Kad, the combination reveals
the number of items a client is interested in, while in PSI-Kad the
anonymity set is the whole range of CIDs. Yet, the combination
still improves the feasibility of PSI-Kad and prevents curious peers
from network crawling.

3.5.3 Provider Privacy. Our proposed methods are not designed
to improve the privacy of content providers. Yet, Hash-Kad offers
slight improvements through the modified publishing process. By

publishing a hashed CID and encrypted provider record to the
DHT, only those with knowledge about the CID can retrieve the
content. This allows content providers to obscure specific CIDs from
servers unaware of the corresponding CIDs. While PSI-Kad could
complement Hash-Kad’s publishing method, their combination
offers no additional privacy benefits.

Prefix-Kad can simplify large-scale identification of content
providers: Prefix fetching enables retrieval of multiple records per
request, potentially exposing all providers and their content to a
curious client. In contrast, Hash-Kad’s publishing process limits
crawling by requiring extensive knowledge of CIDs or brute-forcing
CIDs. This advantage remains evenwith Prefix-Kad, as it does not al-
ter publishing. PSI-Kad offers no privacy improvement for providers
over Vanilla-Kad.

3.5.4 Privacy Improvements. Our proposed methods obfuscate the
target of a request. The server still learns the existence and ori-
gin of a request. This poses a risk for possible attacks, e.g., range
estimation attack or frequency analysis, which can be mitigated
using cover traffic or proxy requests. For cover traffic, peers period-
ically search random keys via prefix fetching. It is not necessary to
complete the lookup as long as it follows a consistent path. Alterna-
tively, peers could send follow-up requests of completed lookups,
misleading range estimations. Proxy requests involve other peers
completing lookups on behalf of the clients, e.g., via an anonymous
and secure channel.

PSI-Kad can mitigate range estimation attacks by using a differ-
ent random value for each request, making them indistinguishable.
However, when combined with Prefix-Kad, the prefix could still be
used to link requests.

4 Double Hashing with Prefix Fetching in IPFS
For a better understanding, we put our protocols in the context of
kad-dht. The kad-dht is used among others in the IPFS network for
peer and data lookup. IPFS is an actively developed P2P overlay
network, allowing content-addressed exchange of data with a large
user-base, making it a prime example for adaption.

In IPFS, a CID is a multihash (MH) with additional metadata, such
as the content’s codec, ensuring content authenticity and system
adaptability. The MH is the digest of a hashing function (typically
SHA-256) and an identifier for the hashing function. The PID in
IPFS is the encoded MH of a peer’s public key.

IPFS utilizes a 256𝑏 ID space for content routing. DHT content is
identified using a DHT identifier (D-ID), the SHA-256 digest of the
CID. Since the CID intrinsically comprises the content’s hash, re-
hashed for its D-ID, content is effectively addressed by a secondary
hash. At the time of writing, the IPFS DHT request contains the CID,
not its direct D-ID. This design creates complications, especially
for prefix requests as defined in Section 3.4. Because the request
needs the CID, the preimage of the derived D-ID, it makes prefix
requests for DHT keys impractical. Consequently, the operational
method of the IPFS DHT must be modified.

In the following, we outline the protocol specification and im-
plementation challenges for double hashing (Hash-Kad) with prefix
fetching (Prefix-Kad) for IPFS. Hash-Kad combined with Prefix-Kad
can be considered as the basis for all our proposed protocols. All
protocols can be derived from this specification by setting specific
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parameters or adjust some calculations, e.g., by setting the prefix
always to the maximum, it is pure Hash-Kad. A detailed protocol
specification can be found in IPIP-373.2

4.1 Content Publication
Content providers compute the fingerprint 𝐹 with SHA-256 from
the salted MH of the CID. Similarly, an EncKey and ServerKey are
derived from the MH with another distinct public salt for domain
separation. The content provider’s PID is encrypted with EncKey,
generating EncPID. The EncPID and record expiration time (TS) are
signed by the content provider, creating a Signature.

As in Vanilla-Kad, the content provider initiates a Kademlia
lookup for the closest peers to 𝐹 . The closest peers receive a publish
request encompassing [𝐹, EncPID, TS, Signature, ServerKey].
Data is sent via a secure and authenticated connection, i.e., servers
can verify the identity of content providers. The DHT record con-
tains [𝐹, ServerKey, PID, EncPID, TS, Signature]. Servers
validate the Signature, guaranteeing authenticity of requests, dis-
carding invalid requests. Servers remain oblivious to the content of
EncPID, given they ignore the MH, from which EncKey is derived.

4.2 Content Retrieval
For content retrieval, clients derive 𝐹 , EncKey, and ServerKey from
MH of the CID, to lookup 𝐹 . To combine Hash-Kad with Prefix-Kad,
clients select and lookup a prefix of 𝐹 , as described in Section 3.4.

The server’s response contains closer peers and matching entries,
encrypted using ServerKey. The record consists of EncPID, TS,
Signature, and if available, contact address of content providers.

The client filters out entries which do not match 𝐹 . For matching
records, the clients undergo a three-step validation: (1) decrypt
EncPIDwith EncKey, (2) validate Signature against decrypted PID,
and (3) assesses validity of TS. Afterwards, the client either tries
to contact the content provider or needs to discover the contact
information of the decrypted PID. IPFS uses the same DHT for
peer and content routing, hence it requires another DHT lookup.
Content is retrieved through the CID via the Bitswap protocol [7].

5 Analysis
In the following, we analyze the expected communication, compu-
tation and storage overhead. The methods have different overheads,
load distributions, and privacy benefits. Our proposed methods do
not modify the original message sequence. Therefore, the methods
do not require additional messages or additional RTTs, however,
additional data needs to be transferred, and the messages need
additional processing. To put the overhead into perspective, we
conducted a measurement of the public IPFS network. We also
provide a summary and overview of the methods showing the
differentiated feasibility of each method.

5.1 Measurement Setup
The purpose of our network measurement is to gain insights about
the DHT usage in a productive network. Specifically, we are inter-
ested in an estimate for the number of records stored by a server,

2https://github.com/ipfs/specs/pull/373

Table 1: Overview of the measurement results

Measurement Period P1 P2

Communicated Peers 36 462 71 573
Content Provider 16 419 25 339

PUT-VALUE 1 019 3 448
GET-VALUE 47 576
ADD-PROVIDERS 2 273 855 14 414 476
GET-PROVIDERS 17 464 165 218
FIND-NODE 391 472 2 830 486

Total Messages 2 683 857 17 414 204

Unique Put keys 112 257
Unique Provider keys 955 754 2 656 265
Unique Get keys 4 290 27 080

the churn of the records, and the number of requests a server experi-
ences. This allows us to analyze load and overhead of the proposed
methods. The stored records also allow us to quantify the risk of
range estimation attacks, prefix lengths, and possible privacy gains.

For the measurement, we chose the IPFS network as an example
network which uses a Kademlia-based DHT, due to the active and
comparatively large user base. We deployed a kubo3 DHT-server
with the default configuration and go-libp2p-kad-dht4 with addi-
tional logging. Kubo is a Go implementation of IPFS and at the time
of writing the most widely deployed implementation. It should
be noted that IPFS nodes behind network address translation act
as DHT clients only, meaning they will not be queried to route
requests. By default, all nodes with a public IP address behave as
DHT servers, actively participating in the routing process.

The deployed node measured the DHT activity by logging incom-
ing DHT messages and changes in the routing table. We conducted
a passive measurement, meaning the node adds no additional traffic
beyond the default behavior. The measurement node was deployed
on a virtual machine (VM) in Central Europe, specifically in Finland.
The VM had 2 ARM vCPU, 4𝐺𝐵 RAM, Ubuntu 22.04.3 LTS as the
OS with Kernel version 5.15.0-89, a public IPv4, and IPv6 address.
The client was compiled with go version go1.21.4 linux/arm64. We
measured in two different time spans from 2023-11-21 to 2023-11-
28, one spanning 24ℎ (P1) and the other spanning 144ℎ (P2). The
measurements are conducted on the same node with the same PID,
however, the node had a clean restart in between. A summary of
the measurement results can be seen in Table 1.

5.2 Overhead
The libp2p-kad-dht has different messages: for querying a value
(GET), for storing a record (PUT/ADD), finding peers (FIND), or for
reachability checks (PING). In Vanilla-Kad, a client sends a GET
request for a key lookup, servers respond to these lookup queries
with 𝑘 closer peers or the value(s) associated with the key.

From a client’s perspective this does not change for all methods.
Lookup requests stay a single GET request, however, with a modified
key. The modifications at most increase the request by a few bytes.

For servers, the overhead is bigger. Except for Hash-Kad, servers
are expected to returnmultiple records. Additionally, servers should
return closer peers. It should be noted that although bandwidth

3https://github.com/ipfs/kubo (kubo/0.25.0-dev/)
4https://github.com/libp2p/go-libp2p-kad-dht (v0.25.0)
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overhead increases, active processing overhead remains low. Most
of the required additional processing can be done asynchronously.

To put the communication overhead into perspective, we use a
back-of-the-envelope calculation derived from our measurements:
The server stores around 956𝑘 (P1) records, which have mostly a
single content provider. Given a PID size of 38𝐵 and CID size of 32𝐵,
we get ≈ 70𝐵 per record. Therefore, the maximum overhead (the
server sends all records) would amount to 70𝐵 · 956𝑘 ≈ 63.82𝑀𝑖𝐵.
The prefix reduces this overhead, depending on the desired privacy.
Assuming, for example, at most 64 records yields 70𝐵 ·64 ≈ 4.38𝐾𝑖𝐵.
With additional encryption (AES-256, Galois-Counter Mode, +16𝐵)
and record signatures (Ed25519, +64𝐵), size of a record increases
to 150𝐵, resulting in a message overhead of 150𝐵 · 64 = 9.375𝐾𝑖𝐵.

In PSI-Kad and Prefix-Kad, servers need to always send possibly
closer peers, which adds an overhead to the record overhead. This
overhead consists of the 𝑘-closest peers or a fraction of the routing
table. Our measurements showed an almost constant size of the
routing table between 210-220 peers. Although the size remained
constant, the routing table experienced quite a high churn rate. If
we again assume the worst case of sending the whole routing table,
it increases a single message by 215 · 38𝐵 ≈ 7.98𝐾𝑖𝐵. It should be
noted that intermediate servers also send 𝑘 · 38𝐵. Considering a
𝑘 = 20 as used in IPFS, the normal message size is 20 · 38𝐵 ≈ 760𝐵.

In summary, query answer size increases depending on the prefix
by a factor of ≈ 101 to 105 for Prefix-Kad. PSI-Kad yields the worst
case overhead of Prefix-Kad. For Hash-Kad, record size is doubled.

So far we mainly analyzed the overhead of the lookup process.
In case of storage, the message size is mostly untouched; except for
Hash-Kad, which changes the information a server stores and re-
ceives. In terms of computation andmemory, Hash-Kad and PSI-Kad
produce additional overhead for the server. Records in Hash-Kad
are bigger due to the encryption and additional required data, re-
quiring the server to store more data. This makes it more costly
for content providers to announce stored content and increases the
used memory of servers. In PSI-Kad, the cost for content providers
stays the same. However, servers need to transform and store addi-
tional data, making a publish process more costly. Although, this
transformation is a one-time cost for new values, republished val-
ues should be unaffected. The memory overhead is comparable to
a DHT duplicate with other adjusted key-value pairs.

5.3 Anonymity Set
The prefix length determines the size of the possible anonymity set
of a request, influencing the number of matching values. Vanilla-
Kad’s lookup mechanism already reduces the anonymity set of
a request, e.g., the range estimation attack considers that a peer
requests peers close to a key. Prefix length is also important for
efficiency, reducing the number of keys returned by a server. To
estimate the severity of a range estimation attack and determine pos-
sible prefix lengths, we investigate the common prefix length (CPL).

In Fig. 3, we show CPL of the measurement node’s PID with
values of the record keys, keys of GET request, and PID of all peers
which were at least once in the routing table. From the peers in
the routing table, we can see roughly a halving of the number of
peers for each CPL until a CPL of 9. The maximum CPL with the
peers in the routing table is in both measurement periods 16 and

less than 50 peers have a CPL of 10 or more. Consequently, most of
the record keys have a CPL between 9–16, with quite a few keys
with a CPL up to 25 and only a few keys with a CPL bigger than
25. The maximum CPL of the stored keys were 30 (P1) and 32 (P2).
Surprisingly, there are quite a few keys which have a CPL of 5 or
less and even 35 (P1) and 349 (P2) keys with a CPL of 0. This seems
unusual, due to the sufficient number of peers with a PID closer
than our measurement node. This can be caused by misconfigured
servers or as a result of the Optimistic Provide5 peer allocation.
Optimistic Provide is a mechanism to improve the speed of record
publishing, it determines based on probabilistic calculations, if a
closer peer exists and can therefore publish records prematurely.

The CPL of the requested GET-PROVIDERS of Fig. 3 can be used to
estimate some practical choices of prefix lengths. Similar to the CPL
of the records, we can see that the majority of requested keys have
a CPL larger than 9. However, we can see more requests with lower
CPL. In contrast to the unusual ADD-PROVIDERS which should only
be sent to the absolute closest peers, GET-PROVIDERS messages are
sent to the locally determined closest peer. While our routing table
indicates that there are closer peers available, the requesting peers
might have a more limited view on the network. Comparing the
GET-PROVIDERS keys with the stored keys, we can determine a
minimal prefix length required to retrieve less than 𝑁 = 64 values.
This minimal prefix length naturally varies based on the distance
to our measurement node. For a CPL of 9 and above, where most of
the records are expected to be, we have an average prefix length of
24. For CPLs between 5 and 8, the minimal prefix length is between
10 and 20. In case of even lower CPLs, prefix lengths between 4 and
9 reduce the candidates to under 64 records.

The CPL analysis shows that the range estimation attack based
on the PID still provides a comparatively large theoretical anonymity
set. Considering the neighbors, the range estimation reveals only
≈ 12𝑏. Fig. 3 also shows that a client can choose different prefix
lengths based on the distance of the key to requested server. In
our case, there are 35/349 entries which have a CPL of 0 with the
measurement node’s PID. Therefore, a prefix length of 1𝑏 for any of
these entries results already in a low number of records. In contrast,
a prefix length of the first 10𝑏 of themeasurement node’s PIDwould
match more than 500𝑘 records. Adjustments to the chosen prefix
length based on return values as proposed in Section 3.5.1, should
consider the distance of a peer to the requested key, before chang-
ing the prefix length. Based on our measurements, we can conclude
that a prefix length of ≈ 24𝑏 provides less than 64 records at the
peers which are theoretically closest to the key. A prefix length
of 24𝑏 provides a theoretical anonymity set of 2232 ≈ 6.9 · 1069.
However, the measurement node should be the closest peer, which
means the size of the real anonymity set is ≤ 64.

5.4 Comparison
We presented three different approaches to obfuscate the item of a
request, protecting requests with their own trade-offs.

Hash-Kad has a low overhead, adds authenticity to the DHT
records and provides content providers with some protection. How-
ever, Hash-Kad provides only a low protection especially when the
CID is known and can be easily hashed to check the fingerprint.

5https://github.com/libp2p/go-libp2p-kad-dht/pull/783
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Figure 3: CPL to the PID of the measurement node.

PSI-Kad provides strong protection against single adversaries,
which gain no information beyond time and number of items of
a request. However, depending on the number of elements in the
network, the overhead can be very large in terms of transferred
data and computation. Furthermore, colluding peers can gain more
information about a request based on the lookup path.

Prefix-Kad can provide similar privacy guarantees as PSI-Kad,
depending on the chosen prefix length or the number of requests.
However, the similar privacy guarantees incur a similar large over-
head in the form of transferred data. A longer prefix reveals some
more information about the requested item, reducing the anonymity
set, however the overhead can be significantly reduced. A big dis-
advantage of prefix fetching is the ability to crawl the DHT. All
entries of the DHT can be retrieved without protection.

For the best privacy-utility trade-off, we propose to combine
Prefix-Kad and either Hash-Kad or PSI-Kad. The prefix fetching
can reduce the overhead of PSI-Kad, while removing the problems
due to crawling the DHT. This allows request obfuscation with
a reasonable overhead and otherwise similar behavior to Vanilla-
Kad. Prefix-Kad in combination with Hash-Kad can increase the
gained privacy of Hash-Kad and could provide additional protection
against crawling the DHT. In Prefix-Hash-Kad, crawling would only
allow to retrieve a list of encrypted records. Furthermore, crawling
the DHT for encrypted records can provide new opportunities, e.g.,
caching and the collection of statistics. While Prefix-Hash-Kad has
lower protection compared to Prefix-PSI-Kad, we believe the advan-
tages provide a better trade-off. Hence, our protocol specification
(see Section 4) also proposes this combination.

6 Conclusion
Request obfuscation is one way to improve the privacy of Kadem-
lia lookups. We proposed three methods to obfuscate the item of
interest. The three methods can be combined with each other for
additional privacy or performance benefits. Furthermore, our meth-
ods could be combined with sender obfuscation methods to further
increase the privacy of users.
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